A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.
Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
A search for production of supersymmetric particles in final states containing jets, missing transverse momentum, and at least one hadronically decaying tau lepton is presented. The data were recorded by the ATLAS experiment in sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 2.05 fb-1 of data. The results are interpreted in the context of gauge mediated supersymmetry breaking models with Mmess = 250 TeV, N5 = 3, mu > 0, and Cgrav = 1. The production of supersymmetric particles is excluded at 95% C.L. up to a supersymmetry breaking scale Lambda = 30 Tev, independent of tan(beta), and up to Lambda = 43 TeV for large tan(beta).
Distribution of the missing transverse energy before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
Distribution of the tau pt before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
Distribution of the effective mass before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
We present an update of a search for supersymmetry in final states containing jets, missing transverse momentum, and one isolated electron or muon, using 1.04 fb^-1 of proton-proton collision data at sqrt{s} = 7 TeV recorded by the ATLAS experiment at the LHC in the first half of 2011. The analysis is carried out in four distinct signal regions with either three or four jets and variations on the (missing) transverse momentum cuts, resulting in optimized limits for various supersymmetry models. No excess above the standard model background expectation is observed. Limits are set on the visible cross-section of new physics within the kinematic requirements of the search. The results are interpreted as limits on the parameters of the minimal supergravity framework, limits on cross-sections of simplified models with specific squark and gluino decay modes, and limits on parameters of a model with bilinear R-parity violation.
Missing transverse energy after requiring one electron with pT>25 GeV, at least three jets with pT>60,25,25 GeV and dphi(jets,Etmiss)>0.2.
Missing transverse energy after requiring one muon with pT>20 GeV, at least three jets with pT>60,25,25 GeV and dphi(jets,Etmiss)>0.2.
Transverse mass after requiring one electron with pT>25 GeV, at least three jets with pT>60,25,25 GeV and dphi(jets,Etmiss)>0.2.
Recent studies have highlighted the potential of jet substructure techniques to identify the hadronic decays of boosted heavy particles. These studies all rely upon the assumption that the internal substructure of jets generated by QCD radiation is well understood. In this article, this assumption is tested on an inclusive sample of jets recorded with the ATLAS detector in 2010, which corresponds to 35 pb^-1 of pp collisions delivered by the LHC at sqrt(s) = 7 TeV. In a subsample of events with single pp collisions, measurementes corrected for detector efficiency and resolution are presented with full systematic uncertainties. Jet invariant mass, kt splitting scales and n-subjettiness variables are presented for anti-kt R = 1.0 jets and Cambridge-Aachen R = 1.2 jets. Jet invariant-mass spectra for Cambridge-Aachen R = 1.2 jets after a splitting and filtering procedure are also presented. Leading-order parton-shower Monte Carlo predictions for these variables are found to be broadly in agreement with data. The dependence of mean jet mass on additional pp interactions is also explored.
Normalised cross-section as a function of the mass of Cambridge-Aachen jets with R=1.2.
Normalised cross-section as a function of the mass of Cambridge-Aachen jets with R=1.2.
Normalised cross-section as a function of the mass of Cambridge-Aachen jets with R=1.2.
A measurement of the jet activity in ttbar events produced in proton-proton collisions at a centre-of-mass energy of 7 TeV is presented, using 2.05 fb^-1 of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. The ttbar events are selected in the dilepton decay channel with two identified b-jets from the top quark decays. Events are vetoed if they contain an additional jet with transverse momentum above a threshold in a central rapidity interval. The fraction of events surviving the jet veto is presented as a function of this threshold for four different central rapidity interval definitions. An alternate measurement is also performed, in which events are vetoed if the scalar transverse momentum sum of the additional jets in each rapidity interval is above a threshold. In both measurements, the data are corrected for detector effects and compared to the theoretical models implemented in MC@NLO, POWHEG, ALPGEN and SHERPA. The experimental uncertainties are often smaller than the spread of theoretical predictions, allowing deviations between data and theory to be observed in some regions of phase space.
The measured fraction of events, the gap fraction, surviving the veto cut of having no additional jets in the |rapidity| interval < 0.8 having a transverse momentum greater than Q, as a function of Q.
The measured fraction of events, the gap fraction, surviving the veto cut of having no additional jets in the |rapidity| interval 0.8-1.5 having a transverse momentum greater than Q, as a function of Q.
The measured fraction of events, the gap fraction, surviving the veto cut of having no additional jets in the |rapidity| interval 1.5-2.1 having a transverse momentum greater than Q, as a function of Q.
A measurement of the Z/gamma* transverse momentum (p_T^Z)) distribution in proton-proton collisions at sqrt(s)=7 TeV is presented using Z/gamma*->e+e- and Z/gamma*->mu+mu- decays collected with the ATLAS detector in data sets with integrated luminosities of 35 pb^-1 and 40 pb^-1, respectively. The normalized differential cross sections are measured separately for electron and muon decay channels as well as for their combination up to p_T^Z of 350 GeV for invariant dilepton masses 66 GeV<m_ll<116 GeV. The measurement is compared to predictions of perturbative QCD and various event generators. The prediction of resummed QCD combined with fixed order perturbative QCD is found to be in good agreement with the data.
The measured normalized differential fiducial cross sections for the E+ E- decay channel for the three different treatments of QED final state radiation.
The measured normalized differential fiducial cross sections for the MU+ MU- decay channel for the three different treatments of QED final state radiation.
The combined measured normalized differential fiducial and acceptance corrected cross sections for the combined E+ E- and MU+ MU- decay channels. The second DSYS error for the corrected cross section is the uncertainty on the acceptance correction.
This letter presents measurements of the differential cross-sections for inclusive electron and muon production in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using data collected by the ATLAS detector at the LHC. The muon cross-section is measured as a function of pT in the range 4 < pT < 100 GeV and within pseudorapidity |eta| < 2.5. In addition the electron and muon cross-sections are measured in the range 7 < pT < 26 GeV and within |eta| <2.0, excluding 1.37<|eta|<1.52. Integrated luminosities of 1.3 pb-1 and 1.4 pb-1 are used for the electron and muon measurements, respectively. After subtraction of the W/Z/gamma* contribution, the differential cross-sections are found to be in good agreement with theoretical predictions for heavy-flavour production obtained from Fixed Order NLO calculations with NLL high-pT resummation, and to be sensitive to the effects of NLL resummation.
Differential cross section as a function of PT for electron heavy-flavour production in the |pseudorapidity| region < 2.0 (excluding 1.37 to 1.52). The systematic error includes the 3.4% luminosity uncertainty.
Inclusive muon cross section for |eta| < 2.5 and pT > 4 GeV: (stat) statistical error, (sys) systematic error.The first systematic error is the intrinsic error of the measurement, the second the error is due to the luminosity.
Inclusive muon cross section after subtraction of W,Z, Drell-Yan and top background for |eta| < 2.5 and pT > 4 GeV: (stat) statistical error, (sys) systematic error. The first systematic error is the intrinsic error of the measurement, the second the error due to the luminosity, the third is due to the subtraction of the background and is dominated by the error on the W, Z inclusive cross sections.
A search is presented for a high mass neutral particle that decays directly to the emu final state. The data sample was recorded by the ATLAS detector in sqrt(s) = 7 TeV pp collisions at the LHC from March to June 2011 and corresponds to an integrated luminosity of 1.07 fb^-1. The data are found to be consistent with the Standard Model background. The high emu mass region is used to set 95% confidence level upper limits on the production of two possible new physics processes: tau sneutrinos in an R-parity violating supersymmetric model and Z'-like vector bosons in a lepton flavor violating model.
Observed and predicted E-MU invariant mass distributions.
Observed and predicted electron PT distributions.
Observed and predicted muon PT distributions.
Hitherto unobserved long-lived massive particles with electric and/or colour charge are predicted by a range of theories which extend the Standard Model. In this paper a search is performed at the ATLAS experiment for slow-moving charged particles produced in proton-proton collisions at 7 TeV centre-of-mass energy at the LHC, using a data-set corresponding to an integrated luminosity of 34 pb-1. No deviations from Standard Model expectations are found. This result is interpreted in a framework of supersymmetry models in which coloured sparticles can hadronise into long-lived bound hadronic states, termed R-hadrons, and 95% CL limits are set on the production cross-sections of squarks and gluinos. The influence of R-hadron interactions in matter was studied using a number of different models, and lower mass limits for stable sbottoms and stops are found to be 294 and 309 GeV respectively. The lower mass limit for a stable gluino lies in the range from 562 to 586 GeV depending on the model assumed. Each of these constraints is the most stringent to date.
Distribution of the observed rate of energy loss in the Pixel detector plus the simulated background and model estimates for three gluino masses.
Distribution of the observed BETA values in the Tile Calorimeter plus the simulated background and model estimates for three gluino masses.
Distribution of the heavy particle Mass estimated from the Pixel detector data plus the simulated background and model estimates for three gluino masses. A cut of dE/dx > 1.1 MeV/(gm*cm**2) is imposed.;.