Date

Jet modification via $\pi^0$-hadron correlations in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Adare, A. ; et al.
Phys.Rev.C 110 (2024) 044901, 2024.
Inspire Record 2797343 DOI 10.17182/hepdata.159378

High-momentum two-particle correlations are a useful tool for studying jet-quenching effects in the quark-gluon plasma. Angular correlations between neutral-pion triggers and charged hadrons with transverse momenta in the range 4--12~GeV/$c$ and 0.5--7~GeV/$c$, respectively, have been measured by the PHENIX experiment in 2014 for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV. Suppression is observed in the yield of high-momentum jet fragments opposite the trigger particle, which indicates jet suppression stemming from in-medium partonic energy loss, while enhancement is observed for low-momentum particles. The ratio and differences between the yield in Au$+$Au collisions and $p$$+$$p$ collisions, $I_{AA}$ and $\Delta_{AA}$, as a function of the trigger-hadron azimuthal separation, $\Delta\phi$, are measured for the first time at the Relativistic Heavy Ion Collider. These results better quantify how the yield of low-$p_T$ associated hadrons is enhanced at wide angle, which is crucial for studying energy loss as well as medium-response effects.

29 data tables

Per-trigger jet-pair yield as a function of $\Delta\phi$ for selected $\pi^0$ trigger and charged-hadron-associated $p_T$ combinations (${{p_{T,\pi^0}} \otimes p_{T,h}}$) in Au$+$Au collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.

Integrated away-side $I_{AA}$ as a function of $p_T^h$. Systematic uncertainties for background subtraction and global scale uncertainties are given.

Differential away-side a function of Deltaphi 0%-20% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.

More…

New constraints on ultraheavy dark matter from the LZ experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Al Musalhi, A.K. ; et al.
Phys.Rev.D 109 (2024) 112010, 2024.
Inspire Record 2758452 DOI 10.17182/hepdata.151392

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/$c^2$ to a few TeV/$c^2$. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of $0.9$ tonne$\times$year, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10$^{17}$ GeV/$c^2$.

5 data tables

Upper limit on the WIMP-nucleon scattering cross section from the multiple-scatter analysis.

Upper limit on the WIMP-nucleus scattering cross section from the multiple-scatter analysis.

Upper limit on the WIMP-nucleon scattering cross section from the single-scatter analysis.

More…

Combination of measurements of the top quark mass from data collected by the ATLAS and CMS experiments at $\sqrt{s}=7$ and 8 TeV

The ATLAS & CMS collaborations Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 261902, 2024.
Inspire Record 2789110 DOI 10.17182/hepdata.143309

A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The data sets used correspond to an integrated luminosity of up to 5 and 20$^{-1}$ of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak $t$-channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is $m_\mathrm{t}$ = 172.52 $\pm$ 0.14 (stat) $\pm$ 0.30 (syst) GeV, with a total uncertainty of 0.33 GeV.

1 data table

Uncertainties on the $m_{t}$ values extracted in the LHC, ATLAS, and CMS combinations arising from the categories described in the text, sorted in order of decreasing value of the combined LHC uncertainty.


First Constraints on WIMP-Nucleon Effective Field Theory Couplings in an Extended Energy Region From LUX-ZEPLIN

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Musalhi, A.K. Al ; et al.
Phys.Rev.D 109 (2024) 092003, 2024.
Inspire Record 2729878 DOI 10.17182/hepdata.145873

Following the first science results of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time projection chamber operating from the Sanford Underground Research Facility in Lead, South Dakota, USA, we report the initial limits on a model-independent non-relativistic effective field theory describing the complete set of possible interactions of a weakly interacting massive particle (WIMP) with a nucleon. These results utilize the same 5.5 t fiducial mass and 60 live days of exposure collected for the LZ spin-independent and spin-dependent analyses while extending the upper limit of the energy region of interest by a factor of 7.5 to 270 keVnr. No significant excess in this high energy region is observed. Using a profile-likelihood ratio analysis, we report 90% confidence level exclusion limits on the coupling of each individual non-relativistic WIMP-nucleon operator for both elastic and inelastic interactions in the isoscalar and isovector bases.

58 data tables

Data points used in analysis in log_10(S2)-S1 space.

Data selection efficiency as a function of nuclear recoil energy

Isoscalar WIMP-nucleon elastic coupling limit for Operator 8

More…

Common femtoscopic hadron-emission source in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Eur.Phys.J.C 85 (2025) 198, 2025.
Inspire Record 2725934 DOI 10.17182/hepdata.152623

The femtoscopic study of pairs of identical pions is particularly suited to investigate the effective source function of particle emission, due to the resulting Bose-Einstein correlation signal. In small collision systems at the LHC, pp in particular, the majority of the pions are produced in resonance decays, which significantly affect the profile and size of the source. In this work, we explicitly model this effect in order to extract the primordial source in pp collisions at $\sqrt{s} = 13$ TeV from charged $\pi$-$\pi$ correlations measured by ALICE. We demonstrate that the assumption of a Gaussian primordial source is compatible with the data and that the effective source, resulting from modifications due to resonances, is approximately exponential, as found in previous measurements at the LHC. The universality of hadron emission in pp collisions is further investigated by applying the same methodology to characterize the primordial source of K-p pairs. The size of the primordial source is evaluated as a function of the transverse mass ($m_{\rm T}$) of the pairs, leading to the observation of a common scaling for both $\pi$-$\pi$ and K-p, suggesting a collective effect. Further, the present results are compatible with the $m_{\rm T}$ scaling of the p-p and p$-\Lambda$ primordial source measured by ALICE in high multiplicity pp collisions, providing compelling evidence for the presence of a common emission source for all hadrons in small collision systems at the LHC. This will allow the determination of the source function for any hadron--hadron pairs with high precision, granting access to the properties of the possible final-state interaction among pairs of less abundantly produced hadrons, such as strange or charmed particles.

29 data tables

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.2<$m_T$<1.4 GeV/$c^{2}$).

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.4<$m_T$<1.5 GeV/$c^{2}$).

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.5<$m_T$<1.8 GeV/$c^{2}$).

More…

Measurement of (anti)alpha production in central Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Lett.B 858 (2024) 138943, 2024.
Inspire Record 2724193 DOI 10.17182/hepdata.153848

In this letter, measurements of (anti)alpha production in central (0$-$10%) Pb$-$Pb collisions at a center-of-mass energy per nucleon$-$nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.02 TeV are presented, including the first measurement of an antialpha transverse-momentum spectrum. Owing to its large mass, the production of (anti)alpha is expected to be sensitive to different particle production models. The production yields and transverse-momentum spectra of nuclei are of particular interest because they provide a stringent test of these models. The averaged antialpha and alpha spectrum is compared to the spectra of lighter particles, by including it into a common blast-wave fit capturing the hydrodynamic-like flow of all particles. This fit is indicating that the (anti)alpha also participates in the collective expansion of the medium created in the collision. A blast-wave fit including only protons, (anti)alpha, and other light nuclei results in a similar flow velocity as the fit that includes all particles. A similar flow velocity, but a significantly larger kinetic freeze-out temperature is obtained when only protons and light nuclei are included in the fit. The coalescence parameter $B_4$ is well described by calculations from a statistical hadronization model but significantly underestimated by calculations assuming nucleus formation via coalescence of nucleons. Similarly, the (anti)alpha-to-proton ratio is well described by the statistical hadronization model. On the other hand, coalescence calculations including approaches with different implementations of the (anti)alpha substructure tend to underestimate the data.

8 data tables

Antialpha spectrum in 0-10% V0M centrality class

Alpha spectrum in 0-10% V0M centrality class

Average alpha and antialpha spectrum in 0-10% V0M centrality class

More…

Photoproduction of K$^{+}$K$^{-}$ pairs in ultra-peripheral collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.Lett. 132 (2024) 222303, 2024.
Inspire Record 2724212 DOI 10.17182/hepdata.151670

K$^{+}$K$^{-}$ pairs may be produced in photonuclear collisions, either from the decays of photoproduced $\phi (1020)$ mesons, or directly as non-resonant K$^{+}$K$^{-}$ pairs. Measurements of K$^{+}$K$^{-}$ photoproduction probe the couplings between the $\phi (1020)$ and charged kaons with photons and nuclear targets. The kaon$-$proton scattering occurs at energies far above those available elsewhere. We present the first measurement of coherent photoproduction of K$^{+}$K$^{-}$ pairs on lead ions in ultra-peripheral collisions using the ALICE detector, including the first investigation of direct K$^{+}$K$^{-}$ production. There is significant K$^{+}$K$^{-}$ production at low transverse momentum, consistent with coherent photoproduction on lead targets. In the mass range $1.1 < M_{\rm{KK}} < 1.4$ GeV/$c^2$ above the $\phi (1020)$ resonance, for rapidity $|y_{\rm{KK}}|<0.8$ and $p_{\rm T,KK} < 0.1$ GeV/$c$, the measured coherent photoproduction cross section is $\mathrm{d}\sigma/\mathrm{d}y$ = 3.37 $\pm\ 0.61$ (stat.) $\pm\ 0.15 $ (syst.) mb. The center-of-mass energy per nucleon of the photon-nucleus (Pb) system $W_{\gamma \mathrm{Pb, n}}$ ranges from 33 to 188 GeV, far higher than previous measurements on heavy-nucleus targets. The cross section is larger than expected for $\phi (1020)$ photoproduction alone. The mass spectrum is fit to a cocktail consisting of $\phi (1020)$ decays, direct K$^{+}$K$^{-}$ photoproduction, and interference between the two. The confidence regions for the amplitude and relative phase angle for direct K$^{+}$K$^{-}$ photoproduction are presented.

2 data tables

d$^2\sigma$/d$y$/d$p_T^2$ in bins of $p_{T,KK}^2$ for $K^+K^-$ photoproduction in ultra-peripheral Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV .

d$^2\sigma$/d$y$/d$p_T^2$ in bins of $M_{KK}$ for $K^+K^-$ photoproduction in ultra-peripheral Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV .


Observation of abnormal suppression of $\mathrm{f}_{0}$(980) production in p$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Lett.B 853 (2024) 138665, 2024.
Inspire Record 2724206 DOI 10.17182/hepdata.151390

The dependence of $\mathrm{f}_{0}$(980) production on the final-state charged-particle multiplicity in p$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV is reported. The production of $\mathrm{f}_{0}$(980) is measured with the ALICE detector via the $\mathrm{f}_0 (980) \rightarrow \pi^{+}\pi^{-}$ decay channel in a midrapidity region of $-0.5

7 data tables

Transverse momentum spectra in different multiplicity classes. Each spectrum is corrected for the branching ratio of (46 $\pm$ 6)% based on [Phys. Rev. Lett. 111 no. 6, (2013) 062001].

The ratio of transverse momentum spectrum to the NSD spectrum

The double ratio of particle yield of f0((980) to charged pions

More…

Light-flavor particle production in high-multiplicity pp collisions at $\mathbf{\sqrt{\textit{s}} = 13}$ TeV as a function of transverse spherocity

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 05 (2024) 184, 2024.
Inspire Record 2711421 DOI 10.17182/hepdata.153642

Results on the transverse spherocity dependence of light-flavor particle production ($\pi$, K, p, $\phi$, ${\rm K^{*0}}$, ${\rm K}^{0}_{\rm{S}}$, $\Lambda$, $\Xi$) at midrapidity in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV were obtained with the ALICE apparatus. The transverse spherocity estimator ($S_{{\rm O}}^{{\it p}_{\rm T}=1}$) categorizes events by their azimuthal topology. Utilizing narrow selections on $S_{\text{O}}^{{\it p}_{\rm T}=1}$, it is possible to contrast particle production in collisions dominated by many soft initial interactions with that observed in collisions dominated by one or more hard scatterings. Results are reported for two multiplicity estimators covering different pseudorapidity regions. The $S_{{\rm O}}^{{\it p}_{\rm T}=1}$ estimator is found to effectively constrain the hardness of the events when the midrapidity ($\left | \eta \right |< 0.8$) estimator is used. The production rates of strange particles are found to be slightly higher for soft isotropic topologies, and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons with larger mass and strangeness content, and observed when the topological selection is done within a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are dominated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like processes is significantly reduced. The results presented in this article are compared with several QCD-inspired Monte Carlo event generators. Models that incorporate a two-component phenomenology, either through mechanisms accounting for string density, or thermal production, are able to describe the observed strangeness enhancement as a function of $S_{{\rm O}}^{{\it p}_{\rm T}=1}$.

45 data tables

Spherocity distributions with respect to different multiplicity selections.

<pT> vs <dN_{#pi}/dEta> for different multiplicity and spherocity classes.

pT differential Phi spectra as a function of spherocity within 0-1% nTracklets.

More…

Charged-particle production as a function of the relative transverse activity classifier in pp, p$-$Pb, and Pb$-$Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 01 (2024) 056, 2024.
Inspire Record 2709103 DOI 10.17182/hepdata.146104

Measurements of charged-particle production in pp, p$-$Pb, and Pb$-$Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum ($p_{\mathrm{T}}^{\rm trig}$) in the range $8

28 data tables

$R_\mathrm{T}$ distribution using events with trigger particles $5<p_\mathrm{T}^\mathrm{trig}<40~\mathrm{GeV}/c$ in the pseudorapidity range of $|\eta|<0.8$ and with $p_\mathrm{T}>0.5~\mathrm{GeV}/c$ in pp collisions at $\sqrt{s}=2.76~\mathrm{TeV}$

$R_\mathrm{T}$ distribution using events with trigger particles $5<p_\mathrm{T}^\mathrm{trig}<40~\mathrm{GeV}/c$ in the pseudorapidity range of $|\eta|<0.8$ and with $p_\mathrm{T}>0.5~\mathrm{GeV}/c$ in pp collisions at $\sqrt{s}=5.02~\mathrm{TeV}$

$R_\mathrm{T}$ distribution using events with trigger particles $5<p_\mathrm{T}^\mathrm{trig}<40~\mathrm{GeV}/c$ in the pseudorapidity range of $|\eta|<0.8$ and with $p_\mathrm{T}>0.5~\mathrm{GeV}/c$ in pp collisions at $\sqrt{s}=7~\mathrm{TeV}$

More…