The spectra of strange hadrons are measured in proton-proton collisions, recorded by the CMS experiment at the CERN LHC, at centre-of-mass energies of 0.9 and 7 TeV. The K^0_s, Lambda, and Xi^- particles and their antiparticles are reconstructed from their decay topologies and the production rates are measured as functions of rapidity and transverse momentum. The results are compared to other experiments and to predictions of the PYTHIA Monte Carlo program. The transverse momentum distributions are found to differ substantially from the PYTHIA results and the production rates exceed the predictions by up to a factor of three.
The rapidity production spectra per NSD event spectra for KS mesons at 0.9 and 7 TeV.
The transverse momentum production spectra per NSD event spectra for KS mesons at 0.9 and 7 TeV.
The rapidity production spectra per NSD event spectra for LAMBDA mesons at 0.9 and 7 TeV.
A search for squarks and gluinos in final states containing jets, missing transverse momentum and no electrons or muons is presented. The data were recorded by the ATLAS experiment in sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 35 inverse picobarns of analysed data. Gluino masses below 500 GeV are excluded at the 95% confidence level in simplified models containing only squarks of the first two generations, a gluino octet and a massless neutralino. The exclusion increases to 870 GeV for equal mass squarks and gluinos. In MSUGRA/CMSSM models with tan(beta)= 3, A_0=0 and mu>0, squarks and gluinos of equal mass are excluded below 775 GeV. These are the most stringent limits to date.
The distribution in Meff (scalar sum of the missing transverse momentum and the transverse momenta of the two highest pT jets) for events with at least 2 jets after the application of all selection criteria (other than the Meff cut itself). The table shows the number of observed data points per 100 GeV bin plus the background prediction of the Standard-Model Monte-Carlo and its upper and lower 1-sigma error limits uncertainty band.
The distribution in Meff (scalar sum of the missing transverse momentum and the transverse momenta of the three highest pT jets) for events with at least 3 jets after the application of all selection criteria (other than the Meff cut itself). The table shows the number of observed data points per 100 GeV bin plus the background prediction of the Standard-Model Monte-Carlo and its upper and lower 1-sigma uncertainty band error limits.
The distribution in MT2 for events with at least 2 jets after the application of all selection criteria (other than the MT2 cut itself). The table shows the number of observed data points per 40 GeV bin plus the background prediction of the Standard-Model Monte-Carlo and its upper and lower 1-sigma uncertainty band error limits.
This Letter presents the first search for supersymmetry in final states containing one isolated electron or muon, jets, and missing transverse momentum from sqrt{s} = 7 TeV proton-proton collisions at the LHC. The data were recorded by the ATLAS experiment during 2010 and correspond to a total integrated luminosity of 35 pb-1. No excess above the standard model background expectation is observed. Limits are set on the parameters of the minimal supergravity framework, extending previous limits. For A_0 = 0 GeV, tan beta = 3, mu > 0 and for equal squark and gluino masses, gluino masses below 700 GeV are excluded at 95% confidence level.
Distribution of ET(C=MISSING) IN GEV for data and background MC calculation.
Distribution of MT IN GEV for data and background MC calculation.
Distribution of M(C=EFFECTIVE) IN GEV for data and background MC calculation.
Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.
CHI distribution for mass bin 340 to 520 GeV.
CHI distribution for mass bin 520 to 800 GeV.
CHI distribution for mass bin 800 to 1200 GeV.
A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the Large Hadron Collider (LHC) and correspond to an integrated luminosity of 315 nb^-1 collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% CL the q* mass interval 0.30 < mq* < 1.26 TeV, extending the reach of previous experiments.
The dijet mass distribution (NUMBER OF EVENTS).
95 PCT CL upper limit of the cross section x acceptance.
We present measurements of the total production rates and momentum distributions of the charmed baryon $\Lambda_c^+$ in $e^+e^- \to$ hadrons at a center-of-mass energy of 10.54 GeV and in $\Upsilon(4S)$ decays. In hadronic events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in $e^+e^- \to c\bar{c}$ events, allowing direct studies of $c$-quark fragmentation. We measure a momentum distribution for $\Lambda_c^+$ baryons that differs significantly from those measured previously for charmed mesons. Comparing with a number of models, we find none that can describe the distribution completely. We measure an average scaled momentum of $\left< x_p \right> = 0.574\pm$0.009 and a total rate of $N_{\Lambda c}^{q\bar{q}} = 0.057\pm$0.002(exp.)$\pm$0.015(BF) $\Lambda_c^+$ per hadronic event, where the experimental error is much smaller than that due to the branching fraction into the reconstructed decay mode, $pK^-\pi^+$. In $\Upsilon (4S)$ decays we measure a total rate of $N_{\Lambda c}^{\Upsilon} = 0.091\pm$0.006(exp.)$\pm$0.024(BF) per $\Upsilon(4S)$ decay, and find a much softer momentum distribution than expected from B decays into a $\Lambda_c^+$ plus an antinucleon and one to three pions.
LAMBDA/C+ differential production rate per hadronic event for the continuum at cm energy 10.54 GeV.
The integrated number of LAMBDA/C+'s per hadronic event for the continuum at cm energy 10.54 GeV.
LAMBDA/C+ differential production rate per UPSILON(4S) decay at cm energy 10.58 GeV.
We present a study of events with Z bosons and jets produced at the Fermilab Tevatron Collider in ppbar collisions at a center of mass energy of 1.96 TeV. The data sample consists of nearly 14,000 Z/G* -> e+e- candidates corresponding to the integrated luminosity of 0.4 fb-1 collected using the D0 detector. Ratios of the Z/G* + >= n jet cross sections to the total inclusive Z/G* cross section have been measured for n = 1 to 4 jet events. Our measurements are found to be in good agreement with a next-to-leading order QCD calculation and with a tree-level QCD prediction with parton shower simulation and hadronization.
Ratio of the cross sections.
Number of observed events per 5 GeV bin for the >=`1Jet sample. Data read from plots.
Number of observed events per 5 GeV bin for the >=2Jet sample. Data read from plots.
We have measured the B0B¯0 mixing probability, χd, using a sample of 965 000 BB¯ pairs from Υ(4S) decays. Counting dilepton events, we find χd=0.157±0.016±0.018−0.021+0.028. Using tagged B0 events, we find χd=0.149±0.023±0.019±0.010. The first (second) error is statistical (systematic). The third error reflects a ±15% uncertainty in the assumption, made in both cases, that charged and neutral B pairs contribute equally to dilepton events. We also obtain a limit on the CP impurity in the Bd0 system, ‖Re(εB0)‖<0.045 at 90% C.L.
No description provided.
Mixing parameter from counting dilepton events. CONST(N=MIXING PARAM) = 1/(1 - LAMBDA(C,N)) * (N(2LEPTON+) + N(2LEPTON-))/(N(LEPTON+,LEPTON-) + N(2LEPTON+) + N(2LEPTON-)). LAMBDA(C,N) is the fraction of dilepton events coming from B+B- decays, LAMBDA(C,N) = f(B+)*Br(B+)**2/(f(B+)*Br(B+)**2 + f(B0)*Br(B0)**2), where f(B+),f(B0) are the productiron fractions of the charged and neutral B's at the UPSI(4S), and Br(B+), Br(B0) are the semileptonic brancing fractions.
Mixing parameter from tagged B0 events.
We report the results on the electromagnetic dissociation of 14.5A GeV28Si and 200A GeV16O projectiles in nuclear emulsion. The overall charge changing production cross sections are determined experimentally and are found to agree reasonably well with those computed theoretically. The relative rate as a function of decay energy for various reaction channels are parameterized in terms of an exponential function. Majority of the events in the most prominent decay modes can be attributed to the excitation of giant dipole resonances. Multiplicity distributions of α particles emerged from nuclear as well as electromagnetic interactions are also investigated.
Electromagnetic dissociation.
Electromagnetic dissociation.
The cross section is calculated from the relation sigma=f/ro*lambda, were ro=7.898*10**22 atoms per cm**3 and f is a weight factor which is unity for nuclear interactions produced by all the emulsion targets, for AG f=0.62.
None
No description provided.
No description provided.
No description provided.