In-medium modifications of the pi pi interaction in photon-induced reactions.

Messchendorp, J.G ; Janssen, S. ; Kotulla, M. ; et al.
Phys.Rev.Lett. 89 (2002) 222302, 2002.
Inspire Record 586889 DOI 10.17182/hepdata.19419

Differential cross sections of the reactions $(\gamma,\pi^\circ\pi^\circ)$ and $(\gamma,\pi^\circ\pi^++\pi^\circ\pi^-)$ have been measured for several nuclei ($^1$H,$^{12}$C, and $^{\rm nat}$Pb) at an incident-photon energy of $E_{\gamma}$=400-460 MeV at the tagged-photon facility at MAMI-B using the TAPS spectrometer. A significant nuclear-mass dependence of the $\pi\pi$ invariant-mass distribution is found in the $\pi^\circ\pi^\circ$ channel. This dependence is not observed in the $\pi^\circ\pi^{+/-}$ channel and is consistent with an in-medium modification of the $\pi\pi$ interaction in the $I$=$J$=0 channel. The data are compared to $\pi$-induced measurements and to calculations within a chiral-unitary approach.

2 data tables match query

Differential cross section for PI0PI0 production with a proton target. Errors are statistical only. Note that the data given in this table are sightly different (newer) than the data points presented in the paper.

Differential cross section for PI0PI+ production with a proton target. Errors are statistical only. Note that the data given in this table are sightly different (newer) than the data points presented in the paper.


Photoproduction of neutral pions on hydrogen at photon energies between 200 and 440 mev

Fischer, G. ; Fischer, H. ; Von Holtey, G. ; et al.
Nucl.Phys.B 16 (1970) 93-101, 1970.
Inspire Record 62733 DOI 10.17182/hepdata.16659

Differential cross sections for neutral-pion photoproduction on hydrogen in the region of the first resonance have been measured by two independent experiments detecting the recoil protons. The results of both measurements have been combined into one set of cross sections covering the photon energy range from 200 to 440 MeV at pion c.m. angles between 50 and 160 degrees.

7 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the polarized structure function sigma(LT') for pion electroproduction in the Roper resonance region.

The CLAS collaboration Joo, K. ; Smith, L.C. ; Aznauryan, I.G. ; et al.
Phys.Rev.C 72 (2005) 058202, 2005.
Inspire Record 681275 DOI 10.17182/hepdata.25214

The polarized longitudinal-transverse structure function $\sigma_{LT^\prime}$ measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of $\sigma_{LT^\prime}$ in the $N(1440){1/2}^+$ (Roper) resonance region at $Q^2=0.40$ and 0.65 GeV$^2$ for both the $\pi^0 p$ and $\pi^+ n$ channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The $\sigma_{LT^\prime}(\pi^+ n)$ channel shows a large sensitivity to the Roper resonance multipoles $M_{1-}$ and $S_{1-}$ and provides new constraints on models of resonance formation.

8 data tables match query

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.34 GeV.

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.38 GeV.

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.34 GeV.

More…

Neutral Pion Electroproduction in the Resonance Region at High $Q^2$

Villano, A.N. ; Stoler, P. ; Bosted, P.E. ; et al.
Phys.Rev.C 80 (2009) 035203, 2009.
Inspire Record 823260 DOI 10.17182/hepdata.54189

The process $ep \to e^{\prime}p^{\prime}\pi^0$ has been measured at $Q^2$ = 6.4 and 7.7 \ufourmomts in Jefferson Lab's Hall C. Unpolarized differential cross sections are reported in the virtual photon-proton center of mass frame considering the process $\gamma^{\ast}p \to p^{\prime}\pi^0$. Various details relating to the background subtractions, radiative corrections and systematic errors are discussed. The usefulness of the data with regard to the measurement of the electromagnetic properties of the well known $\Delta(1232)$ resonance is covered in detail. Specifically considered are the electromagnetic and scalar-magnetic ratios $R_{EM}$ and $R_{SM}$ along with the magnetic transition form factor $G_M^{\ast}$. It is found that the rapid fall off of the $\Delta(1232)$ contribution continues into this region of momentum transfer and that other resonances

45 data tables match query

Differential cross sections at Q**2=6.212 GeV**2, EPSILON=0.4411, W=1.312 GeV and COS(THETA(*))=-0.9 for the small SOS spectrometer.

Differential cross sections at Q**2=6.212 GeV**2, EPSILON=0.4411, W=1.312 GeV and COS(THETA(*))=-0.7 for the small SOS spectrometer.

Differential cross sections at Q**2=6.212 GeV**2, EPSILON=0.4411, W=1.312 GeV and COS(THETA(*))=-0.5 for the small SOS spectrometer.

More…

Backward electroproduction of pi0 mesons on protons in the region of nucleon resonances at four momentum transfer squared Q**2 = 1.0-GeV**2.

The JLab Hall A collaboration Laveissiere, G. ; Degrande, N. ; Jaminion, S. ; et al.
Phys.Rev.C 69 (2004) 045203, 2004.
Inspire Record 625669 DOI 10.17182/hepdata.25226

Exclusive electroproduction of pi0 mesons on protons in the backward hemisphere has been studied at Q**2 = 1.0 GeV**2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma* p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma_T+epsilon*sigma_L, sigma_TL, and sigma_TT were separated from the azimuthal distribution and are presented together with the MAID and SAID parametrizations.

12 data tables match query

Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.975.

Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.925.

Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.875.

More…