Differential measurements of Higgs boson production in the $\tau$-lepton-pair decay channel are presented in the gluon fusion, vector-boson fusion (VBF), $VH$ and $t\bar{t}H$ associated production modes, with particular focus on the VBF production mode. The data used to perform the measurements correspond to 140 fb$^{-1}$ of proton-proton collisions collected by the ATLAS experiment at the LHC. Two methods are used to perform the measurements: the Simplified Template Cross-Section (STXS) approach and an Unfolded Fiducial Differential measurement considering only the VBF phase space. For the STXS measurement, events are categorized by their production mode and kinematic properties such as the Higgs boson's transverse momentum ($p^{\text{H}}_\text{T}$), the number of jets produced in association with the Higgs boson, or the invariant mass of the two leading jets ($m_{jj}$). For the VBF production mode, the ratio of the measured cross-section to the Standard Model prediction for $m_{jj}>1.5$ TeV and $p^{\text{H}}_\text{T}>200$ GeV ($p^{\text{H}}_\text{T}<200$ GeV) is ${1.29}^{+0.39}_{-0.34}$ (${0.12}^{+0.34}_{-0.33}$). This is the first VBF measurement for the higher-$p^{\text{H}}_\text{T}$ criteria, and the most precise for the lower-$p^{\text{H}}_\text{T}$ criteria. The fiducial cross-section measurements, which only consider the kinematic properties of the event, are performed as functions of variables characterizing the VBF topology, such as the signed $\Delta\phi_{jj}$ between the two leading jets. The measurements have a precision of 30%-50% and agree well with the Standard Model predictions. These results are interpreted in the SMEFT framework, and place the strongest constraints to date on the CP-odd Wilson coefficient $c_{H\tilde{W}}$.
Distribution of the reconstructed $\tau\tau$ invariant mass ($m_{\tau\tau}$) for all events in the VBF_0 signal region for $p_{\text{T}}^{H}<200$ GeV. The observed Higgs boson signal corresponds to $(\sigma\times B)/(\sigma\times B)_{\text{SM}}\,=\,0.99$. Entries with values above the $x$-axis range are shown in the last bin of each distribution. The prediction for each sample is determined from the likelihood fit performed to measure the total $pp\rightarrow H\rightarrow\tau\tau$ cross-section.
Distribution of the reconstructed $\tau\tau$ invariant mass ($m_{\tau\tau}$) for all events in the VBF_0 signal region for $p_{\text{T}}^{H}>200$ GeV. The observed Higgs boson signal corresponds to $(\sigma\times B)/(\sigma\times B)_{\text{SM}}\,=\,0.99$. Entries with values above the $x$-axis range are shown in the last bin of each distribution. The prediction for each sample is determined from the likelihood fit performed to measure the total $pp\rightarrow H\rightarrow\tau\tau$ cross-section.
Distribution of the reconstructed $\tau\tau$ invariant mass ($m_{\tau\tau}$) for all events in the VBF_1 signal region for $p_{\text{T}}^{H}<200$ GeV. The observed Higgs boson signal corresponds to $(\sigma\times B)/(\sigma\times B)_{\text{SM}}\,=\,0.99$. Entries with values above the $x$-axis range are shown in the last bin of each distribution. The prediction for each sample is determined from the likelihood fit performed to measure the total $pp\rightarrow H\rightarrow\tau\tau$ cross-section.
This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.
Charged-hadron cross-section in pp collisions. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 0-5% for p+Pb, divided by 〈TPPB〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 5-10% for p+Pb, divided by 〈TPPB〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
New particles with large masses that decay into hadronically interacting particles are predicted by many models of physics beyond the Standard Model. A search for a massive resonance that decays into pairs of dijet resonances is performed using 140 fb$^{-1}$ of proton$-$proton collisions at $\sqrt{s}=13$ TeV recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. Resonances are searched for in the invariant mass of the tetrajet system, and in the average invariant mass of the pair of dijet systems. A data-driven background estimate is obtained by fitting the tetrajet and dijet invariant mass distributions with a four-parameter dijet function and a search for local excesses from resonant production of dijet pairs is performed. No significant excess of events beyond the Standard Model expectation is observed, and upper limits are set on the production cross-sections of new physics scenarios.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.10 < $\alpha$ < 0.12.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.12 < $\alpha$ < 0.14.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.14 < $\alpha$ < 0.16.
A search for physics beyond the Standard Model inducing periodic signals in the dielectron and diphoton invariant mass spectra is presented using 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data collected by the ATLAS experiment at the LHC. Novel search techniques based on continuous wavelet transforms are used to infer the frequency of periodic signals from the invariant mass spectra and neural network classifiers are used to enhance the sensitivity to periodic resonances. In the absence of a signal, exclusion limits are placed at the 95% confidence level in the two-dimensional parameter space of the clockwork gravity model. Model-independent searches for deviations from the background-only hypothesis are also performed.
The observed exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.
The median expected exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.
The expected plus one standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.
A search for forward proton scattering in association with light-by-light scattering mediated by an axion-like particle is presented, using the ATLAS Forward Proton spectrometer to detect scattered protons and the central ATLAS detector to detect pairs of outgoing photons. Proton-proton collision data recorded in 2017 at a centre-of-mass energy of $\sqrt{s} = 13$ TeV were analysed, corresponding to an integrated luminosity of 14.6 fb$^{-1}$. A total of 441 candidate signal events were selected. A search was made for a narrow resonance in the diphoton mass distribution, corresponding to an axion-like particle (ALP) with mass in the range 150-1600 GeV. No excess is observed above a smooth background. Upper limits on the production cross section of a narrow resonance are set as a function of the mass, and are interpreted as upper limits on the ALP production coupling constant, assuming 100% decay branching ratio into a photon pair. The inferred upper limit on the coupling constant is in the range 0.04-0.09 TeV$^{-1}$ at 95%confidence level.
Signal selection efficiency as a function of ALP mass $m_{\textrm{X}}$ for the exclusive (EL), single-dissociative (SD), and double-dissociative (DD) processes. The ratio of the number of selected events to the number of generated MC events is given (black points) and is parameterised by an analytic function (red solid line). The linear (black dashed line) and cubic (blue chain line) interpolations of the black points are used to derive the envelopes (cyan filled region) which are regarded as systematic uncertainties.
The diphoton mass distribution of the mixed-data sample (black points).
The $(\xi_{\gamma\gamma}^{+},\xi_{\gamma\gamma}^{-})$ distribution of the selected data candidates after the full event selection in $m_{\gamma\gamma}$ in [150,1600] GeV with $m_{\gamma\gamma}$ contours (blue) and $y_{\gamma\gamma}$ contours (black). The range of $\xi_{\gamma\gamma}$ in which forward-proton matching is possible, $[0.035-\xi_{\textrm{th}}, 0.08+\xi_{\textrm{th}} ]$, for events that pass the matching requirement to the A or C side as indicated. No event passed the matching requirement for both the A-side and C-side.
A search for a new massive charged gauge boson, $W'$, is performed with the ATLAS detector at the LHC. The dataset used in this analysis was collected from proton-proton collisions at a centre-of-mass energy of $\sqrt{s} =13$ TeV, and corresponds to an integrated luminosity of 139 fb$^{-1}$. The reconstructed $tb$ invariant mass is used to search for a $W'$ boson decaying into a top quark and a bottom quark. The result is interpreted in terms of a $W'$ boson with purely right-handed or left-handed chirality in a mass range of 0.5-6 TeV. Different values for the coupling of the $W'$ boson to the top and bottom quarks are considered, taking into account interference with single-top-quark production in the $s$-channel. No significant deviation from the background prediction is observed. The results are expressed as upper limits on the $W' \rightarrow tb$ production cross-section times branching ratio as a function of the $W'$-boson mass and in the plane of the coupling vs the $W'$-boson mass.
Distribution (events/100 GeV) of the reconstructed $m_{tb}$ for data and backgrounds in the 0-lepton channel's signal region 1 after the background-only fit to data. The systematics uncertainty is shown for the post-fit background sum, including the background statistical uncertainty. The individual background components are obtained after the fit, too. There are also the pre-fit background sum and the expected signal distribution. The distribution of the $W^{\prime}$ boson signal for a mass of 3 TeV is normalised to the predicted cross-section. The last bin in each distribution includes overflow.
Distribution (events/100 GeV) of the reconstructed $m_{tb}$ for data and backgrounds in the 0-lepton channel's signal region 2 after the background-only fit to data. The systematics uncertainty is shown for the post-fit background sum, including the background statistical uncertainty. The individual background components are obtained after the fit, too. There are also the pre-fit background sum and the expected signal distribution. The distribution of the $W^{\prime}$ boson signal for a mass of 3 TeV is normalised to the predicted cross-section. The last bin in each distribution includes overflow.
Distribution (events/100 GeV) of the reconstructed $m_{tb}$ for data and backgrounds in the 0-lepton channel's the signal region 3 after the background-only fit to data. The systematics uncertainty is shown for the post-fit background sum, including the background statistical uncertainty. The individual background components are obtained after the fit, too. There are also the pre-fit background sum and the expected signal distribution. The distribution of the $W^{\prime}$ boson signal for a mass of 3 TeV is normalised to the predicted cross-section. The last bin in each distribution includes overflow.
A study of the polarisation and CP properties in $ZZ$ production is presented. The used data set corresponds to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. The $ZZ$ candidate events are reconstructed using two same-flavour opposite-charge electron or muon pairs. The production of two longitudinally polarised $Z$ bosons is measured with a significance of 4.3 standard deviations, and its cross-section is measured in a fiducial phase space to be $2.45 \pm 0.60$ fb, consistent with the next-to-leading-order Standard Model prediction. The inclusive differential cross-section as a function of a CP-sensitive angular observable is also measured. The results are used to constrain anomalous CP-odd neutral triple gauge couplings.
Unfolded differential cross-section as a function of the Optimal Observable $\mathcal{O}_{T_{yz,1} T_{yz,3}}$
This paper presents the observation of four-top-quark ($t\bar{t}t\bar{t}$) production in proton-proton collisions at the LHC. The analysis is performed using an integrated luminosity of 140 fb$^{-1}$ at a centre-of-mass energy of 13 TeV collected using the ATLAS detector. Events containing two leptons with the same electric charge or at least three leptons (electrons or muons) are selected. Event kinematics are used to separate signal from background through a multivariate discriminant, and dedicated control regions are used to constrain the dominant backgrounds. The observed (expected) significance of the measured $t\bar{t}t\bar{t}$ signal with respect to the standard model (SM) background-only hypothesis is 6.1 (4.3) standard deviations. The $t\bar{t}t\bar{t}$ production cross section is measured to be $22.5^{+6.6}_{-5.5}$ fb, consistent with the SM prediction of $12.0 \pm 2.4$ fb within 1.8 standard deviations. Data are also used to set limits on the three-top-quark production cross section, being an irreducible background not measured previously, and to constrain the top-Higgs Yukawa coupling and effective field theory operator coefficients that affect $t\bar{t}t\bar{t}$ production.
Post-fit distributions for the fitted variables in the CRs for the fake/non-prompt lepton background - CR HF e. The QmisID represents the backgrounds with a mis-assigned charge. HF e and HF $\mu$ are the backgrounds with fake/non-prompt leptons. Mat. Conv. and Low $m_{\gamma*}$ are the material and virtual photon conversions.
Post-fit distributions for the fitted variables in the CRs for the fake/non-prompt lepton background - CR HF $\mu$. The QmisID represents the backgrounds with a mis-assigned charge. HF e and HF $\mu$ are the backgrounds with fake/non-prompt leptons. Mat. Conv. and Low $m_{\gamma*}$ are the material and virtual photon conversions.
A search for dark matter produced in association with a Higgs boson in final states with two hadronically decaying $\tau$-leptons and missing transverse momentum is presented. The analysis uses $139$ fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. No evidence for physics beyond the Standard Model is found. The results are interpreted in terms of a 2HDM+$a$ model. Exclusion limits at 95% confidence level are derived. Model-independent limits are also set on the visible cross section for processes beyond the Standard Model producing missing transverse momentum in association with a Higgs boson decaying to $\tau$-leptons.
Expected CLs values in the Low mA SR, mA vs tanB signal grid.
Observed CLs values in the Low mA SR, mA vs tanB signal grid.
Expected CLs values in the High mA SR, mA vs ma signal grid.
Higgs boson production via gluon-gluon fusion is measured in the $WW^{\ast} \to e\nu\mu\nu$ decay channel. The dataset utilized corresponds to an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector from $\sqrt{s}=13$ TeV proton-proton collisions delivered by the Large Hadron Collider between 2015 and 2018. Differential cross sections are measured in a fiducial phase space restricted to the production of at most one additional jet. The results are consistent with Standard Model expectations, derived using different Monte Carlo generators.
Measured differential fiducial cross section for $p_{T}^{H}$ in the 0+1-jet fiducial region using the regularized in-likelihood unfolding method. The quoted uncertainties include statistical and systematic uncertainties from experimental and theory sources as well as background normalization effects and shape effects from background and signal.
Measured differential fiducial cross section for $m_{\ell\ell}$ in the 0+1-jet fiducial region using the regularized in-likelihood unfolding method. The quoted uncertainties include statistical and systematic uncertainties from experimental and theory sources as well as background normalization effects and shape effects from background and signal.
Measured differential fiducial cross section for $Y_{\ell\ell}$ in the 0+1-jet fiducial region using the regularized in-likelihood unfolding method. The quoted uncertainties include statistical and systematic uncertainties from experimental and theory sources as well as background normalization effects and shape effects from background and signal.