Hyperon Production in $e^+ e^-$ Interactions in the $\Upsilon$ Region

The CLEO collaboration Alam, M.S. ; Csorna, S.E. ; Garren, L. ; et al.
Phys.Rev.Lett. 53 (1984) 24, 1984.
Inspire Record 200712 DOI 10.17182/hepdata.20410

We report measurements from the CLEO detector of the rate of Ξ and Λ production in e+e− interactions in the upsilon region. Hyperon production from the decay of the ϒ(1s) is compared with continuum e+e− data. The ratio of the production rates of Λ (and Λ―) to K0 (and K―0) on the ϒ(1s) is 0.21 ± 0.03, much larger than in the continuum, 0.07 ± 0.01. The ratios of the production rates of the Ξ and Λ are comparable, 0.10±0.02 [ϒ(1S)] and 0.07 ± 0.02 (continuum). We discuss some implications of the data for gluon and quark fragmentation models.

2 data tables

CONTINUUM IS ECM 10.38 TO 10.64 GEV.

No description provided.


Measurements of the proton and deuteron spin structure functions g1 and g2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.D 58 (1998) 112003, 1998.
Inspire Record 467140 DOI 10.17182/hepdata.22265

Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2 > 1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.

33 data tables

Averaged A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

More…

A Re-Evaluation of the nuclear Structure Function Ratios for D, He, Li, C and Ca

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Nucl.Phys.B 441 (1995) 3-11, 1995.
Inspire Record 393377 DOI 10.17182/hepdata.32848

We present a re-evaluation of the structure function ratios F2(He)/F2(D), F2(C)/F2(D) and F2(Ca)/F2(D) measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. We also present the ratios F2(C)/F2(Li), F2(Ca)/F2(Li) and F2(Ca)/F2(C) measured at 90 GeV. The results are based on data already published by NMC; the main difference in the analysis is a correction for the masses of the deuterium targets and an improvement in the radiative corrections. The kinematic range covered is 0.0035 < x < 0.65, 0.5 < Q^2 <90 GeV^2 for the He/D, C/D and Ca/D data and 0.0085 < x < 0.6, 0.84 < Q^2 < 17 GeV^2 for the Li/C/Ca ones.

6 data tables

Additional normalization uncertainty of 0.4 pct not included.

Additional normalization uncertainty of 0.4 pct not included.

Additional normalization uncertainty of 0.4 pct not included.

More…

Test of quark model predictions in the reactions $\pi^+ p \to \omega \Delta^{++}$ and $\rho^0\Delta^{++}$ at 5 GeV/c

Lyons, L. ; Karshon, U. ; Eisenberg, Y. ; et al.
Nucl.Phys.B 85 (1975) 165-178, 1975.
Inspire Record 1392677 DOI 10.17182/hepdata.32120

The well-known class-A quark-model relations of Białas and Zalewski are parametrised in a particular form, where one can compare the data with the predictions separately for the meson non-flip and flip parts, defined in the transversity frame. A 3-parameter fit to the joint decay angular distribution is performed on the experimental data, and the results are compared with the quark-model predictions for various regions of the four-momentum transfer. The effect of an s -wave state under the ρ 0 is discussed.

1 data table

A THREE PARAMETER FIT IS MADE TO THE JOINT DECAY DISTRIBUTION.


ESTIMATE OF THE AVERAGE MULTIPLICITY OF RELATIVISTIC PROTONS PRODUCED IN MULTI - NUCLEON AND pi- C-12 INTERACTIONS

Grishin, V.G. ; Kanarek, T. ; Simic, L. ;
Sov.J.Nucl.Phys. 36 (1982) 248, 1982.
Inspire Record 168966 DOI 10.17182/hepdata.39146

None

12 data tables

No description provided.

No description provided.

No description provided.

More…

SOURCES OF LEADING PIONS IN pi+ p AND pi- p INTERACTIONS AT 16-GeV/c AND 40-GeV/c

Becker, L. ; Grishin, V.G. ; Kvatadze, R.A. ;
Sov.J.Nucl.Phys. 35 (1982) 543, 1982.
Inspire Record 166978 DOI 10.17182/hepdata.39232

None

10 data tables

P=4 IS 'LEADING'.

P=5 IS 'LEADING'.

P=5 IS 'LEADING'.

More…

Azimuthal Correlations of Identical Pions in Pion - Nucleus and Pion - Nucleon Interactions at $p=40$-{GeV}/$c$

Grishin, V.G. ; Jenik, L. ; Kanarek, T. ;
Sov.J.Nucl.Phys. 34 (1981) 223, 1981.
Inspire Record 156944 DOI 10.17182/hepdata.39234

None

12 data tables

No description provided.

No description provided.

No description provided.

More…

THE DEPENDENCE OF CHARACTERISTICS OF pi+- MESONS PRODUCED IN pi- C INTERACTIONS AT 40-GeV/c ON TOTAL ENERGY IN THE CMS AND QCD OF SEMIHARD PROCESS

Baatar, Ts. ; Ivanovskaya, I.A. ; Serdamba, L. ; et al.
JINR-P1-88-469, 1988.
Inspire Record 267040 DOI 10.17182/hepdata.38869

None

3 data tables

THE MULTIPLICITY OF CHARGED PIONS HAS BEEN FITTED BY THE FORMULA: MULT(PI+-)=CONST(Q=1)+CONST(Q=2)*EXP(+SLOPE*2*SQRT(LN(S))), WHERE S IS THE TOTAL ENERGY SQUERED OF THE SYSTEM PROJECTILE - PARTICIPATOR AND IS DEFINED AS 2*E(P=1)*(TARGET MASS), WHERE TARGET MASS HAS BEEN OBTAINED AS A SUM OF (E-PL) OVER SECONDARY PARTICLES.

THE AVERAGE PT OF CHARGED PIONS HAS BEEN FITTED BY THE FORMULA: MEAN(N=PT)=CONST(Q=1)+CONST(Q=2)*EXP(SLOPE*SQRT(LN(S))), WHERE S IS THE TOTAL ENERGY SQUERED OF THE SYSTEM PROJECTILE - PARTICIPATOR AND IS DEFINED AS 2*E(P=1)*(TARGET MASS), WHERE TARGET MASS HAS BEEN OBTAINED AS A SUM OF (E-PL) OVER SECONDARY PARTICLES.

THE AVERAGE PT**2 OF CHARGED PIONS HAS BEEN FITTED BY THE FORMULA: MEAN(N=PT**2)=CONST(Q=1)+CONST(Q=2)*EXP(SLOPE*SQRT(LN(S))), WHERE S IS THE TOTAL ENERGY SQUERED OF THE SYSTEM PROJECTILE - PARTICIPATOR AND IS DEFINED AS 2*E(P=1)*(TARGET MASS), WHERE TARGET MASS HAS BEEN OBTAINED AS A SUM OF (E-PL) OVER SECONDARY PARTICLES.


BOUND STATES BETWEEN PROTONS AND MAGNETIC POLES: INFLUENCE ON THE RUBAKOV EFFECT

Masperi, L. ; Mazzitelli, F.D. ;
Lett.Nuovo Cim. 43 (1985) 123, 1985.
Inspire Record 15833 DOI 10.17182/hepdata.37590

Taking into account the structure of the proton in a very simple way, we find the energy levels and the wave functions for the bound states of a proton in the field of an Abelian magnetic pole, confirming the enhancement of the Rubakov effect.

1 data table

No description provided.


Azimuthal Correlations of ($\pi^+ \pi^-$) Pairs in Pion - Nucleus and Pion - Nucleon Interactions at $p$ = 40-{GeV}/$c$

Grishin, V.G. ; Jenik, L. ; Kanarek, T. ;
JINR-P1-80-348, 1980.
Inspire Record 154325 DOI 10.17182/hepdata.17811

None

9 data tables

No description provided.

No description provided.

No description provided.

More…