Scaling properties of azimuthal anisotropy in Au + Au and Cu + Cu collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 162301, 2007.
Inspire Record 723948 DOI 10.17182/hepdata.143460

Detailed differential measurements of the elliptic flow for particles produced in Au+Au and Cu+Cu collisions at sqrt(s_NN) = 200 GeV are presented. Predictions from perfect fluid hydrodynamics for the scaling of the elliptic flow coefficient v_2 with eccentricity, system size and transverse energy are tested and validated. For transverse kinetic energies KE_T ~ m_T-m up to ~1 GeV, scaling compatible with the hydrodynamic expansion of a thermalized fluid is observed for all produced particles. For large values of KE_T, the mesons and baryons scale separately. A universal scaling for the flow of both mesons and baryons is observed for the full transverse kinetic energy range of the data when quark number scaling is employed. In both cases the scaling is more pronounced in terms of KE_T rather than transverse momentum.

15 data tables

$v_2$ vs. $p_T$ for charged hadrons for Au+Au collisions.

$v_2$ vs. $p_T$ for charged hadrons for Cu+Cu collisions.

$v_2$ vs. $p_T$ for charged hadrons. divided by $k$ times ($k = 3.1$) the $p_T$-integrated $v_2$ (centrality) for Au+Au and Cu+Cu collisions.

More…

Measurement of high-p(T) single electrons from heavy-flavor decays in p + p collisions at s**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 97 (2006) 252002, 2006.
Inspire Record 725484 DOI 10.17182/hepdata.57283

The momentum distribution of electrons from decays of heavy flavor (charm and beauty) for midrapidity |y| < 0.35 in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 0.3 < p_T < 9 GeV/c. Two independent methods have been used to determine the heavy flavor yields, and the results are in good agreement with each other. A fixed-order-plus-next-to-leading-log pQCD calculation agrees with the data within the theoretical and experimental uncertainties, with the data/theory ratio of 1.72 +/- 0.02^stat +/- 0.19^sys for 0.3 < p_T < 9 GeV/c. The total charm production cross section at this energy has also been deduced to be sigma_(c c^bar) = 567 +/- 57^stat +/- 224^sys micro barns.

3 data tables

Heavy-flavor decay electrons invariant differential cross-section An additional 10% normalization uncertainty is to add.

Differential charm cross section To obtain this value, the differential "charm-decay" electrons cross-section, integrated over PT>0.4 GeV/c, has been extrapolated down to PT=0 using the spectrum shape predicted by a fixed-order-plus-next-to-leading-log (FONLL)calculation. The contribution from beauty and beauty cascades, estimated to be 0.1 microbarn, has been substracted, and the c->e branching ratio used was 9.5 +- 1.0%.

Total charm cross section To obtain the total charm cross section, the differential charm cross section has been extrapolated to the whole rapidity range, using a HVQMNR rapidity distribution with aCTEQ5M PDF.


Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 172301, 2007.
Inspire Record 731668 DOI 10.17182/hepdata.57287

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured electrons from heavy flavor (charm and bottom) decays for 0.3 < p_T < 9 GeV/c at midrapidity (|y| < 0.35) in Au+Au collisions at sqrt(s_NN) = 200 GeV. The nuclear modification factor R_AA relative to p+p collisions shows a strong suppression in central Au+Au collisions, indicating substantial energy loss of heavy quarks in the medium produced at RHIC. A large azimuthal anisotropy, v_2, with respect to the reaction plane is observed for 0.5 < p_T < 5 GeV/c indicating non-zero heavy flavor elliptic flow. Both R_AA and v_2 show a p_T dependence different from those of neutral pions. A comparison to transport models which simultaneously describe R_AA(p_T) and v_2(p_T) suggests that the viscosity to entropy density ratio is close to the conjectured quantum lower bound, i.e., near a perfect fluid.

10 data tables

Invariant yield of electrons from heavy-flavor decays for 0-10% central collisions, versus PT.

Invariant yield of electrons from heavy-flavor decays for 10-20% central collisions, versus PT.

Invariant yield of electrons from heavy-flavor decays for 20-40% central collisions, versus PT.

More…

J / psi production versus transverse momentum and rapidity in p+p collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 232002, 2007.
Inspire Record 731611 DOI 10.17182/hepdata.57311

J/Psi production in p+p collisions at sqrt(s) = 200 GeV has been Measured in the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over a rapidity range of -2.2 < y < 2.2 and a transverse momentum range of 0 < pT < 9 GeV/c. The statistics available allow a detailed measurement of both the pT and rapidity distributions and are sufficient to constrain production models. The total cross section times branching ratio determined for J/Psi production is B_{ll} sigma_pp^J/psi = 178 +/- 3(stat) +/- 53(syst) +/- 18(norm) nb.

6 data tables

J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at mid rapidity : -0.35<y<0.35.

J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at forward rapidities : absolute value of y belongs to [1.2;2.2].

Mean PT^2 value at mid rapidities : -0.35<y<0.35 The mean PT is obtained with a phenomonological fit of the J/PSI distribution in PT of the form (1/(2*PI*PT))*D(SIG)/DPT = A ( 1+(PT/B)^2)^-6 .The systematic error includes the incertainty from the maximum shape deviation permitted by the point-to-point correlated errors and from allowing the exponent of the fit fonctionto be a free parameter.

More…

J/psi production vs centrality, transverse momentum, and rapidity in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 232301, 2007.
Inspire Record 731670 DOI 10.17182/hepdata.57282

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured J/psi production for rapidities 2.2 < y < 2.2 in Au+Au collisions at sqrt(s_NN) = 200 GeV. The J/psi invariant yield and nuclear modification factor R_AA as a function of centrality, transverse momentum and rapidity are reported. A suppression of J/psi relative to binary collision scaling of proton-proton reaction yields is observed. Models which describe the lower energy J/Psi data at the Super Proton Synchrotron (SPS) invoking only J/psi destruction based on the local medium density would predict a significantly larger suppression at RHIC and more suppression at mid rapidity than at forward rapidity. Both trends are contradicted by our data.

13 data tables

J/PSI invariant yield versus transverse momentum for 0-20%, 20-40%, 40-60%, 60-92% centrality at mid rapidity :,-0.35<y<0.35 An up/down correction, to translate each point at the center of it's relative bin, have been applied to the data.

J/PSI invariant yield versus transverse momentum for 0-20%, 20-40%, 40-60%, 60-92% centrality at forward rapidities : absolute value of y belongs to [1.2;2.2] An up/down correction, to translate each point at the center of it's relative bin, have been applied to the data.

Mean PT^2 values for different bins of centrality, at mid rapidities :-0.35<y<0.35,.

More…

Correlated production of p and anti-p in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Lett.B 649 (2007) 359-369, 2007.
Inspire Record 731666 DOI 10.17182/hepdata.143520

Correlations between p and pbar's at transverse momenta typical of enhanced baryon production in Au+Au collisions are reported. The PHENIX experiment measures same and opposite sign baryon pairs in Au+Au collisions at sqrt(s_NN) = 200 GeV. Correlated production of p and p^bar with the trigger particle from the range 2.5 < p_T < 4.0 GeV/c and the associated particle with 1.8 < p_T < 2.5 GeV/c is observed to be nearly independent of the centrality of the collisions. Same sign pairs show no correlation at any centrality. The conditional yield of mesons triggered by baryons (and anti-baryons) and mesons in the same pT range rises with increasing centrality, except for the most central collisions, where baryons show a significantly smaller number of associated mesons. These data are consistent with a picture in which hard scattered partons produce correlated p and p^bar in the p_T region of the baryon excess.

9 data tables

$1/{N_{trig}}$ ${dN}/{d\Delta\phi}$ distributions for charge-inclusive baryon triggers and associated particles for six centrality bins. Triggers have 2.5 < $p_T$ < 4.0 GeV/$c$ and associated particles have 1.8 < $p_T$ < 2.5 GeV/$c$.

$1/{N_{trig}}$ ${dN}/{d\Delta\phi}$ distributions for charge selected $\bar{p}$ and $p$ triggers both with associated $p$ for six centrality bins. Triggers have 2.5 < $p_T$ < 4.0 GeV/$c$ and associated particles have 1.8 < $p_T$ < 2.5 GeV/$c$.

$1/{N_{trig}}$ ${dN}/{d\Delta\phi}$ distributions for charge selected $\bar{p}$ and $p$ triggers both with associated $p$ for six centrality bins. Triggers have 2.5 < $p_T$ < 4.0 GeV/$c$ and associated particles have 1.8 < $p_T$ < 2.5 GeV/$c$.

More…

System size and energy dependence of jet-induced hadron pair correlation shapes in Cu + Cu and Au + Au collisions at s(NN)**(1/2) = 200-GeV and 62.4-GeV.

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.Lett. 98 (2007) 232302, 2007.
Inspire Record 731669 DOI 10.17182/hepdata.142605

We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.

6 data tables

The measured correlation $C(\Delta\phi)$ and the dijet correlation $J(\Delta\phi)$ in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Dijet correlations in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV.

Dijet correlations in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV.

More…

Inclusive cross section and double helicity asymmetry for \pi^0 production in p+p collisions at sqrt(s)=200 GeV: Implications for the polarized gluon distribution in the proton

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 76 (2007) 051106, 2007.
Inspire Record 749394 DOI 10.17182/hepdata.142289

The PHENIX experiment presents results from the RHIC 2005 run with polarized proton collisions at sqrt(s)=200 GeV, for inclusive \pi^0 production at mid-rapidity. Unpolarized cross section results are given for transverse momenta p_T=0.5 to 20 GeV/c, extending the range of published data to both lower and higher p_T. The cross section is described well for p_T < 1 GeV/c by an exponential in p_T, and, for p_T > 2 GeV/c, by perturbative QCD. Double helicity asymmetries A_LL are presented based on a factor of five improvement in uncertainties as compared to previously published results, due to both an improved beam polarization of 50%, and to higher integrated luminosity. These measurements are sensitive to the gluon polarization in the proton, and exclude maximal values for the gluon polarization.

4 data tables

The neutral pion production cross section at $\sqrt{s}$ = 200 GeV as a function of $p_T$ and the results of NLO pQCD calculations for theory scales $\mu$ = $p_T$/2, $p_T$, and $2p_T$. Additional 9.7% normalization uncertainty is not included.

The double helicity asymmetry ($A_{LL}$) for neutral pion production at $\sqrt{s}$ = 200 GeV as a function of $p_T$ (GeV/$c$). Not included in the figure/table: the correlated for all points scale systematic uncertainty of 9.4% (scales both the values and stat. uncertainties by the same factor).

The single helicity asymmetry ($A_L$) for neutral pion production at $\sqrt{s}$ = 200 GeV as a function of $p_T$ (GeV/$c$). Systematic uncertainties are negligible.

More…

Transverse momentum and centrality dependence of dihadron correlations in Au+Au collisions at sqrt(s_NN)=200 GeV: Jet-quenching and the response of partonic matter

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 77 (2008) 011901, 2008.
Inspire Record 751182 DOI 10.17182/hepdata.143605

Azimuthal angle \Delta\phi correlations are presented for charged hadrons from dijets for 0.4 < p_T < 10 GeV/c in Au+Au collisions at sqrt(s_NN) = 200 GeV. With increasing p_T, the away-side distribution evolves from a broad to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side can be divided into a partially suppressed 'head' region centered at Delta\phi ~ \pi, and an enhanced 'shoulder' region centered at Delta\phi ~ \pi +/- 1.1. The p_T spectrum for the 'head' region softens toward central collisions, consistent with the onset of jet quenching. The spectral slope for the 'shoulder' region is independent of centrality and trigger p_T, which offers constraints on energy transport mechanisms and suggests that the 'shoulder' region contains the medium response to energetic jets.

6 data tables

<p>Per-trigger yield versus $\Delta\phi$ for various trigger and partner $p_T$ ($p_T^A$ $\otimes$ $p_T^B$), in $p$+$p$ and 0-20% Au+Au collisions.</p> <p><i>The systematic errors on $v_2$ are represented by "sys. corr." and are dominated by the reaction plane resolution. The fit that accounts for the overlap of the near- and away-side Gaussians at $\Delta\phi_{min}$ gives systematically lower $b_0$ values that that for ZYAM, and is assigned as the differences as one-sided systematic errors on $b_0$ represented by "sys. uncorr.".

<p>Per-trigger yield versus $\Delta\phi$ for various trigger and partner $p_T$ ($p_T^A$ $\otimes$ $p_T^B$), in $p$+$p$ and 0-20% Au+Au collisions.</p> <p><i>The systematic errors on $v_2$ are represented by "sys. corr." and are dominated by the reaction plane resolution. The fit that accounts for the overlap of the near- and away-side Gaussians at $\Delta\phi_{min}$ gives systematically lower $b_0$ values that that for ZYAM, and is assigned as the differences as one-sided systematic errors on $b_0$ represented by "sys. uncorr.".</p></i>

<p>$R_{HS}$ versus $p_T^B$ for $p$+$p$ and Au+Au collisions for four trigger selections.</p> <p><i>The systematic errors on $v_2$ are represented by "sys. corr." and are dominated by the reaction plane resolution. The fit that accounts for the overlap of the near- and away-side Gaussians at $\Delta\phi_{min}$ gives systematically lower $b_0$ values that that for ZYAM, and is assigned as the differences as one-sided systematic errors on $b_0$ represented by "sys. uncorr.".</p></i>

More…

Cold Nuclear Matter Effects on J/Psi as Constrained by Deuteron-Gold Measurements at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 77 (2008) 024912, 2008.
Inspire Record 768530 DOI 10.17182/hepdata.57373

All of the experimental data points presented in the original paper are correct and unchanged (including statistical and systematic uncertainties). However, herein we correct a comparison between the experimental data and a theoretical picture, because we discovered a mistake in the code used. All of the most probable sigma_breakup values differ by less than 0.4 mb from those originally presented. However, the one standard deviation uncertainties (that include contributions from both the statistical and systematic uncertainties on the experimental data points) are approximately 30-60% larger than originally reported. We give a table of the new comparison results and corrected versions of Figs. 8-11 of the original paper and we note that no correction is needed for results from the data-driven method in Fig. 13.

22 data tables

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus rapidity in D+AU collisions, over 3 bins of rapidity.

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus rapidity in D+AU collisions, over 5 bins of rapidity.

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus PT at backward rapidity (-2.2<y<-1.2) in D+AU collisions.

More…