The asymmetry ratioA = (σ⊥ -σ∥)/(σ⊥ +σ∥) has been measured by means of linearly polarized γ-rays for π0 and π+ photoproduction. For the reaction γ + p → n + π+, measurements were taken for θc.m. = 135° at γ-ray energies ranging from 390 to 909 MeV. For the reaction γ + p → p + π0, measurements were taken for θc.m. = 60° and 90° at γ-ray energies ranging from 426 to 918 Mev.
No description provided.
No description provided.
No description provided.
The reactions K L o p→K S o p, π + Λ , π + Σ o have been measured for center-of-mass energies from 1540 to 1610 MeV. Channel cross sections and coefficients of the Legendre polynomial expansion of the differential cross sections and hyperon polarizations are presented. We see no evidence in the πΛ channel for the suggested 3 2 − resonance at 1580 MeV. The cross section for the K S o p channel shows an energy dependence which is not predicted by the existing phase shift solutions based on charged kaon data.
No description provided.
No description provided.
No description provided.
We report the results of a precise measurement of the K−p→K¯∘n cross section between 515 and 1065 MeV/c in steps of 10 MeV/c. The statistical errors are less than 1%, a major improvement in accuracy over previous work. No evidence is found for the new I=1 K¯N resonances at 546 and 602 MeV/c reported recently by Carroll et al.
No description provided.
The differential cross section for the charge-exchange reaction K−p→K¯0n has been measured at 22 incident momenta between 515 and 956 MeV/c. Experimental results and Legendre-polynomial fits to the data are presented.
No description provided.
No description provided.
No description provided.
We report the results of a precise measurement of the K−p→K¯0n cross section between 515 and 1065 MeV/c in steps of 10 MeV/c. The statistical errors are less than 1%, a major improvement in accuracy over previous work. We discuss in detail the experimental apparatus and the corrections made to the data. No evidence is found for the new I=1 K¯N resonances at 546 and 602 MeV/c K− momenta reported recently by Carroll et al.
No description provided.
We present measurements of the differential and polarization cross sections for the reactions KL0p→Ks0p, Λπ+, Σ0π+, and Λπ+π0 made in a hydrogen bubble chamber exposed to a beam of KL0 with incident momentum 550±35 MeV/c. The quasielastic data imposes additional constraints on the partial-wave analyses of the KN and K¯N systems. Our data show no strong energy-dependent effects in the region of the reported Σ(1580), JP=32− state. The phase of the forward regeneration amplitude was found to be about - 160° independent of KL0 momentum.
SYSTEMATIC ERRORS INCLUDED.
ROUGH FIT - POSSIBLY OTHER SYSTEMATIC ERRORS.
No description provided.
In this paper we report measurements of the backward K−p differential cross section at 49 momenta covering the momentum range 476-1084 MeV/c. The statistical precision achieved, typically 2.5%, is an order of magnitude better than previous measurements. The systematic errors for this reaction are about 1%. The differential cross section for the reaction K−p→Σ−π+ where the π+ emerges at 0° has also been measured at 32 momenta with comparable improvement in precision over previous experiments. A partial-wave analysis of the K¯N channels including the new K−p backward elastic data is presented.
No description provided.
No description provided.
We report measurements of the two-photon processes e+e−→e+e−π+π− and e+e−→e+e−K+K−, at an e+e− center-of-mass energy of 29 GeV. In the π+π− data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ→f)=3.2±0.4 keV. The π+π− continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K− data we find agreement of the high-mass continuum with the QCD prediction; limits on f′(1520) and θ(1720) formation are presented.
Data read from graph. Additional overall systematic error 20% not included.
Data read from graph.. Additional overall systematic error 20% not included.
Data read from graph.. Additional overall systematic error 20% not included.. The Q**2 dependence is normalized to unity for the bin centred on Q**2 = 0.
Results are presented on the exclusive production of four-prong final states in photon-photon collisions from the TPC/Two-Gamma detector at the SLAC e+e− storage ring PEP. Measurement of dE/dx and momentum in the time-projection chamber (TPC) provides identification of the final states 2π+2π−, K+K−π+π−, and 2K+2K−. For two quasireal incident photons, both the 2π+2π− and K+K−π+π− cross sections show a steep rise from threshold to a peak value, followed by a decrease at higher mass. Cross sections for the production of the final states ρ0ρ0, ρ0π+π−, and φπ+π− are presented, together with upper limits for φρ0, φφ, and K*0K¯ *0. The ρ0ρ0 contribution dominates the four-pion cross section at low masses, but falls to nearly zero above 2 GeV. Such behavior is inconsistent with expectations from vector dominance but can be accommodated by four-quark resonance models or by t-channel factorization. Angular distributions for the part of the data dominated by ρ0ρ0 final states are consistent with the production of JP=2+ or 0+ resonances but also with isotropic (nonresonant) production. When one of the virtual photons has mass (mγ2=-Q2≠0), the four-pion cross section is still dominated by ρ0ρ0 at low final-state masses Wγγ and by 2π+2π− at higher mass. Further, the dependence of the cross section on Q2 becomes increasingly flat as Wγγ increases.
UNTAGGED DATA.
TAGGED DATA, RESULTS OBTAINED USING TRANSVERSE-TRANSVERSE LUMINOSITY ONLY. DATA FOR Q2=0 ARE FROM UNTAGGED SAMPLE, ERRORS DUE TO RELATIVE NORMALISATION OF THESE SAMPLES IS INCLUDED INTO ERRORS QUOTED.
UNTAGGED DATA.
Exclusive electroproduction of pi0 mesons on protons in the backward hemisphere has been studied at Q**2 = 1.0 GeV**2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma* p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma_T+epsilon*sigma_L, sigma_TL, and sigma_TT were separated from the azimuthal distribution and are presented together with the MAID and SAID parametrizations.
Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.975.
Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.925.
Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.875.