Differential cross sections for the elastic scattering of negative pi mesons on protons (π−−p→π−−p) were measured at the Berkeley Bevatron at five laboratory kinetic energies of the pion between 500 and 1000 MeV. The results were least-squares fitted with a power series in the cosine of the center-of-mass scattering angle, and total elastic cross sections for π−−p→π−−p were obtained by integrating under the fitted curves. The coefficients of the cosine series are shown plotted versus the incident pion laboratory kinetic energy. These curves display as a striking feature a large value of the coefficient of cos5θ* peaking in the vicinity of the 900-MeV resonance. This implies that a superposition of F52 and D52 partial waves is prominent in the scattering at this energy, since the coefficients for terms above cos5θ* are negligible. One possible explanation is that the F52 enhancement comes from an elastic resonance in the isotopic spin T=12 state, consistent with Regge-pole formalism, and the D52 partial-wave state may be enhanced by inelastic processes. At 600 MeV the values of the coefficients do not seem to demand the prominence of any single partial-wave state, although the results are compatible with an enhancement in the J=32 amplitude. A table listing quantum numbers plausibly associated with the various peaks and "shoulders" seen in the π±−p total cross-section curves is presented.
No description provided.
No description provided.
No description provided.
Differential cross sections for the elastic scattering of positive pi mesons by protons were measured at the Berkeley Bevatron at pion laboratory kinetic energies between 500 and 1600 MeV. Fifty scintillation counters and a matrix coincidence system were used to identify incoming pions and detect the recoil proton and pion companions. Results were fitted with a power series in the cosine of the center-of-mass scattering angle, and total elastic cross sections were obtained by integrating under the fitted curves. The coefficients of the cosine series are displayed, plotted versus the laboratory kinetic energy of the pion. The most striking features of these curves are the large positive value of the coefficient of cos6θ*, and the large negative value of the coefficient of cos4θ*, both of which maximize in the vicinity of the 1350-MeV peak in the total cross section. These results indicate that the most predominant state contributing to the scattering at the 1350-MeV peak has total angular momentum J=72, since the coefficients for terms above cos6θ* are negligible at this energy. One possible explanation is that the 1350-MeV peak is the result of an F72 resonance lying on the same Regge-pole trajectory as the (32, 32) resonance near 195 MeV.
No description provided.
No description provided.
No description provided.
Measurements of π0 photoproduction have been made at 235, 285, 335, and 435 MeV, using a beam of polarized x rays. Using a calculated value of polarization, an analysis is made which indicates a possible need for γ, ρ, π, or γ, ω, π coupling. The polarization calculations are checked by measurements made as a function of photon production angle at 335 MeV.
No description provided.
Angular distributions of recoil-proton polarization in elastic π±p scattering were measured at 523-, 572-, and 689-MeV incident pion kinetic energy. Polarization measurements were made by observing the azimuthal asymmetry in the subsequent scattering of recoil protons in large carbon-plate spark chambers. Typical strong variation of the polarization with pion scattering angle near the πp diffraction minima was observed. Since existing opinion favors a D13 resonance at 600 MeV, a phase-shift analysis was attempted in order to confirm the existence and parity of this resonance. Available πp total and differential cross sections, these polarization data, and some possible restrictive assumptions related to the 600-MeV resonance were used in the analysis. Though the polarization results aided significantly in restricting the number of acceptable phase-shift sets, still, many plausible and qualitatively different sets were found.
No description provided.
No description provided.
No description provided.
Angular distributions of recoil-proton polarization in elastic π±p scattering were measured at 864-, 981-, and 1301-MeV incident pion kinetic energy. Polarization measurements were made by observing the azimuthal asymmetry in the subsequent scattering of recoil protons in large carbon-plate spark chambers. The spark chambers proved to be very suitable polarization analyzer detectors. Strong variation of the polarization with backward pion scattering angle was observed.
No description provided.
No description provided.
No description provided.
None
No description provided.
Neutron angular distributions from the charge-exchange (π0n) and inelastic modes (π0π0n,π+π−n) of the π−−p interaction have been investigated at 313 and 371 MeV incident-pion kinetic energy. The data were obtained with an electronic counter system. Elastic and inelastic neutrons were separated in the all-neutral final states by time of flight. At both energies the charge-exchange differential cross section at the forward neutron angles differs from that determined by Caris et al. from measurements of the π0-decay gamma distributions, but generally agrees with the phase-shift-analysis calculations of Roper. The distribution of inelastic neutrons from both modes shows a strong preference for low center-of-mass neutron energies. The distribution of these neutrons does not correspond to that expected from the I=0, π−π interaction (ABC effect) suggested to account for the anomaly in p−d collisions observed by Abashian et al. Finally, all available charge-exchange differential-cross-section data from this and other experiments were combined by at least-squares fit to a Legendre expansion of the form dσdΩ*(cosθπ0*)=Σl=0NalPl(cosθπ0*) with the following results (in mb/sr):
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
The polarization and angular distribution of protons scattered from protons, helium, beryllium, carbon, aluminum, calcium, iron, and tantalum were measured as functions of angle at 725 MeV. A variation of the usual double-elastic-scattering method was used, in that the sense of the first scattering angle was reversed in finding asymmetries, rather than the second angle. Energy analysis of the scattered beam was accomplished by means of a 102-degree magnetic spectrometer allowing a total resolution of ±10 MeV. The data were fitted with an optical model. In the proton-nucleus scattering the polarization reaches a maximum value of about 40% at angles less than the diffraction minimum. Results in proton-proton scatterings are more interesting; however, because of an uncertainty in the analyzing power of carbon, a definite statement cannot be made. One can say, however, that either the polarization in proton-proton scatterings is above 50% at this energy or the analyzing power of carbon at 6 deg and 600 MeV is more than 40%, which is considerably greater than the 30% measured at 725 MeV.
No description provided.
No description provided.
No description provided.
The elastic, the pion-production, and the multipion-annihilation cross sections for antiproton-proton interactions at 3.28 and 3.66 BeV/c incident antiproton momenta have been measured. A comparison of the elastic interactions at 3.28 BeV/c with a purely-absorbing disc optical model gave a best value for the radius of interaction of 1.3 F. The real part of the forward scattering amplitude has been found to be less than 20% of the imaginary part. A study of the asymmetries in double elastic scatters yielded a value for a polarizing power of the hydrogen consistent with zero when averaged over production angles.
No description provided.
'1'.
'1'.