Mass identified particle production in proton anti-proton collisions at s**(1/2) = 300-GeV, 540-GeV, 1000-GeV, and 1800-GeV

The E735 collaboration Alexopoulos, T. ; Allen, C. ; Anderson, E.W. ; et al.
Phys.Rev.D 48 (1993) 984-997, 1993.
Inspire Record 363171 DOI 10.17182/hepdata.22669

The yields and average transverse momenta of pions, kaons, and antiprotons produced at the Fermilab p¯p collider at s=300, 540, 1000, and 1800 GeV are presented and compared with data from the energies reached at the CERN collider. We also present data on the dependence of average transverse momentum 〈pt〉 and particle ratios as a function of charged particle density dNcdη; data for particle densities as high as six times the average value, corresponding to a Bjorken energy density 6 GeV/fm3, are reported. These data are relevant to the search for quark-gluon phase of QCD.

11 data tables

PT RANGE FROM 0 TO INFINITY.

PT RANGE FROM 0 TO INFINITY.

No description provided.

More…

Search for dark matter produced in association with a single top quark and an energetic $W$ boson in $\sqrt{s}=$ 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 83 (2023) 603, 2023.
Inspire Record 2514114 DOI 10.17182/hepdata.136029

This paper presents a search for dark matter, $\chi$, using events with a single top quark and an energetic $W$ boson. The analysis is based on proton-proton collision data collected with the ATLAS experiment at $\sqrt{s}=$ 13 TeV during LHC Run 2 (2015-2018), corresponding to an integrated luminosity of 139 fb$^{-1}$. The search considers final states with zero or one charged lepton (electron or muon), at least one $b$-jet and large missing transverse momentum. In addition, a result from a previous search considering two-charged-lepton final states is included in the interpretation of the results. The data are found to be in good agreement with the Standard Model predictions and the results are interpreted in terms of 95% confidence-level exclusion limits in the context of a class of dark matter models involving an extended two-Higgs-doublet sector together with a pseudoscalar mediator particle. The search is particularly sensitive to on-shell production of the charged Higgs boson state, $H^{\pm}$, arising from the two-Higgs-doublet mixing, and its semi-invisible decays via the mediator particle, $a$: $H^{\pm} \rightarrow W^\pm a (\rightarrow \chi\chi)$. Signal models with $H^{\pm}$ masses up to 1.5 TeV and $a$ masses up to 350 GeV are excluded assuming a tan$\beta$ value of 1. For masses of $a$ of 150 (250) GeV, tan$\beta$ values up to 2 are excluded for $H^{\pm}$ masses between 200 (400) GeV and 1.5 TeV. Signals with tan$\beta$ values between 20 and 30 are excluded for $H^{\pm}$ masses between 500 and 800 GeV.

161 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=highst_mamh_obs">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=highst_mamh_exp">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=highst_mhtb_lowma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=highst_mhtb_lowma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=highst_mhtb_highma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=highst_mhtb_highma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=lowst_mamh_obs">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=lowst_mamh_exp">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=lowst_mhtb_lowma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=lowst_mhtb_lowma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=lowst_mhtb_highma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=lowst_mhtb_highma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_mamh_obs">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_mamh_exp">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_mhtb_lowma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_mhtb_lowma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_mhtb_highma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_mhtb_highma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_mamh_obs">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_mamh_exp">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_lowma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_lowma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_highma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_highma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_mamh_obs">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_mamh_exp">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_mhtb_lowma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_mhtb_lowma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_mhtb_highma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_mhtb_highma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_mamh_obs">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_mamh_exp">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_mhtb_lowma_obs">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_mhtb_lowma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_mhtb_highma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_highst_mamh_obs">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=2L_highst_mamh_exp">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_highst_mhtb_lowma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=2L_highst_mhtb_lowma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_highst_mhtb_highma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=2L_highst_mhtb_highma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_lowst_mamh_exp">2L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_lowst_mhtb_lowma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_lowst_mhtb_highma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=highst_dmtt_mamh_obs">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=highst_dmtt_mamh_exp">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=highst_dmtt_mhtb_lowma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=highst_dmtt_mhtb_lowma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=highst_dmtt_mhtb_highma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=highst_dmtt_mhtb_highma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=lowst_dmtt_mamh_obs">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=lowst_dmtt_mamh_exp">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=lowst_dmtt_mhtb_lowma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=lowst_dmtt_mhtb_lowma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=lowst_dmtt_mhtb_highma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=lowst_dmtt_mhtb_highma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mamh_obs">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mamh_exp">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_lowma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_lowma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_highma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_highma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mamh_obs">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mamh_exp">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_lowma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_lowma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_highma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_highma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mamh_obs">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mamh_exp">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_lowma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_lowma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_highma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_highma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mamh_obs">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mamh_exp">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_lowma_obs">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_lowma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_highma_obs">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_highma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_highst_dmtt_mamh_obs">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_highst_dmtt_mamh_exp">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_lowma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_lowma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_highma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_highma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_lowst_dmtt_mamh_exp">2L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_lowma_obs">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_lowma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_highma_obs">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_highma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.7) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.35) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.7) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.35) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SR0L_mwtagged">0L region m(b1,W-tagged)</a> <li><a href="?table=SR0L_mtbmet">0L region m_{\mathrm{T}}^{\mathrm{b,E_{\mathrm{T}^{\mathrm{miss}}}}}</a> <li><a href="?table=SR0L_nwtagged">0L region N_{\mathrm{W-tagged}}</a> <li><a href="?table=SR1L_Had_mbj">1L hadronic top $m_{\mathrm{b1},\mathrm{\cancel{b1}}}$</a> <li><a href="?table=SR1L_Lep_mbj">1L leptonic top $m_{\mathrm{b1},\mathrm{\cancel{b1}}}$</a> <li><a href="?table=SR1L_Lep_nwtaggged">1L leptonic top region N_{\mathrm{W-tagged}}</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SR0L">Cutflow of 4 signal points in the 0L regions.</a> <li><a href="?table=cutflow_SR1L_Had">Cutflow of 4 signal points in the 1L hadronic top regions.</a> <li><a href="?table=cutflow_SR1L_Lep">Cutflow of 4 signal points in the 1L leptonic top region.</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li> <b>highst_grid1_0L:</b> <a href="?table=highst_grid1_Acc_0L">Acceptance table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=highst_grid1_Eff_0L">Efficiency table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>highst_grid2_0L:</b> <a href="?table=highst_grid2_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=highst_grid2_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>highst_grid3_0L:</b> <a href="?table=highst_grid3_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=highst_grid3_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <li> <b>highst_grid1_1L:</b> <a href="?table=highst_grid1_Acc_1L">Acceptance table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=highst_grid1_Eff_1L">Efficiency table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>highst_grid2_1L:</b> <a href="?table=highst_grid2_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=highst_grid2_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>highst_grid3_1L:</b> <a href="?table=highst_grid3_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=highst_grid3_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <li> <b>lowst_grid1_0L:</b> <a href="?table=lowst_grid1_Acc_0L">Acceptance table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=lowst_grid1_Eff_0L">Efficiency table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>lowst_grid2_0L:</b> <a href="?table=lowst_grid2_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=lowst_grid2_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>lowst_grid3_0L:</b> <a href="?table=lowst_grid3_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=lowst_grid3_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <li> <b>lowst_grid1_1L:</b> <a href="?table=lowst_grid1_Acc_1L">Acceptance table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=lowst_grid1_Eff_1L">Efficiency table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>lowst_grid2_1L:</b> <a href="?table=lowst_grid2_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=lowst_grid2_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>lowst_grid3_1L:</b> <a href="?table=lowst_grid3_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=lowst_grid3_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> </ul> <b>Truth Code snippets</b> are available under "Resources" (purple button on the left)

The observed exclusion contour at 95% CL as a function of the $m_a$ vs. $m_{H^{\pm}}$ and assuming tan$\beta$ = 1, $m_{\mathrm{DM}} = 10 \mathrm{GeV}$, $g_{\chi} = 1$ and sin$\theta = 0.7$. Masses that are within the contours are excluded. Only signals simulating the tW+DM final states are considered in this contour.

The expected exclusion contour at 95% CL as a function of the $m_a$ vs. $m_{H^{\pm}}$ and assuming tan$\beta$ = 1, $m_{\mathrm{DM}} = 10 \mathrm{GeV}$, $g_{\chi} = 1$ and sin$\theta = 0.7$. Masses that are within the contours are excluded. Only signals simulating the tW+DM final states are considered in this contour.

More…

Version 2
Measurement of the energy asymmetry in $t\bar{t}j$ production at 13 TeV with the ATLAS experiment and interpretation in the SMEFT framework

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 374, 2022.
Inspire Record 1941095 DOI 10.17182/hepdata.111348

A measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139 $\mathrm{fb}^{-1}$ of data collected by the ATLAS detector at the Large Hadron Collider during $pp$ collisions at $\sqrt{s}=13$ TeV. The observable measures the different probability of top and antitop quarks to have the higher energy as a function of the jet scattering angle with respect to the beam axis. The energy asymmetry is measured in the semileptonic $t\bar{t}$ decay channel, and the hadronically decaying top quark must have transverse momentum above $350$ GeV. The results are corrected for detector effects to particle level in three bins of the scattering angle of the associated jet. The measurement agrees with the SM prediction at next-to-leading-order accuracy in quantum chromodynamics in all three bins. In the bin with the largest expected asymmetry, where the jet is emitted perpendicular to the beam, the energy asymmetry is measured to be $-0.043\pm0.020$, in agreement with the SM prediction of $-0.037\pm0.003$. Interpreting this result in the framework of the Standard Model effective field theory (SMEFT), it is shown that the energy asymmetry is sensitive to the top-quark chirality in four-quark operators and is therefore a valuable new observable in global SMEFT fits.

12 data tables

Data Measurements and predictions of the energy asymmetry in three bins of the jet angle $\theta_j$. The SM prediction was obtained from simulations of $t\bar{t}j$ events with MadGraph5_aMC@NLO + Pythia 8 at NLO in QCD for $t\bar{t}j$ + PS, including MC statistical and scale uncertainties.

Data measurements and predictions of the energy asymmetry in three bins of the jet angle $\theta_j$. The SM prediction was obtained from simulations of $t\bar{t}j$ events with MadGraph5_aMC@NLO + Pythia 8 at NLO in QCD for $t\bar{t}j$ + PS, including MC statistical and scale uncertainties.

Correlation coefficients $\rho_{i,j}$ for the statistical and systematic uncertainties between the $i$-th and $j$-th bin of the differential $A_E$ measurement as a function of the jet scattering angle $\theta_j$

More…

Search for lepton-flavor-violation in $Z$-boson decays with $\tau$-leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.Lett. 127 (2022) 271801, 2022.
Inspire Record 1865746 DOI 10.17182/hepdata.105516

A search for lepton-flavor-violating $Z\to e\tau$ and $Z\to\mu\tau$ decays with $pp$ collision data recorded by the ATLAS detector at the LHC is presented. This analysis uses 139 fb$^{-1}$ of Run 2 $pp$ collisions at $\sqrt{s}=13$ TeV and is combined with the results of a similar ATLAS search in the final state in which the $\tau$-lepton decays hadronically, using the same data set as well as Run 1 data. The addition of leptonically decaying $\tau$-leptons significantly improves the sensitivity reach for $Z\to\ell\tau$ decays. The $Z\to\ell\tau$ branching fractions are constrained in this analysis to $\mathcal{B}(Z\to e\tau)<7.0\times10^{-6}$ and $\mathcal{B}(Z\to \mu\tau)<7.2\times10^{-6}$ at 95% confidence level. The combination with the previously published analyses sets the strongest constraints to date: $\mathcal{B}(Z\to e\tau)<5.0\times10^{-6}$ and $\mathcal{B}(Z\to \mu\tau)<6.5\times10^{-6}$ at 95% confidence level.

16 data tables

The best-fit predicted and observed distributions of the combined NN output in the low-$p_\text{T}$-SR for the $e\tau_\mu$ channel. The first and last bin include underflow and overflow events, respectively.

The best-fit predicted and observed distributions of the combined NN output in the low-$p_\text{T}$-SR for the $\mu\tau_e$ channel. The first and last bin include underflow and overflow events, respectively.

The best-fit predicted and observed distributions of the combined NN output in the high-$p_\text{T}$-SR for the $e\tau_\mu$ channel. The first and last bin include underflow and overflow events, respectively.

More…

Constraints on Higgs boson properties using $WW^{*}(\rightarrow e\nu\mu\nu) jj$ production in 36.1 fb$^{-1}$ of $\sqrt{s}$=13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 622, 2022.
Inspire Record 1932467 DOI 10.17182/hepdata.130779

This article presents the results of two studies of Higgs boson properties using the $WW^*(\rightarrow e\nu\mu\nu)jj$ final state, based on a dataset corresponding to 36.1/fb of $\sqrt{s}$=13 TeV proton$-$proton collisions recorded by the ATLAS experiment at the Large Hadron Collider. The first study targets Higgs boson production via gluon$-$gluon fusion and constrains the CP properties of the effective Higgs$-$gluon interaction. Using angular distributions and the overall rate, a value of $\tan(\alpha) = 0.0 \pm 0.4$ stat. $ \pm 0.3$ syst is obtained for the tangent of the mixing angle for CP-even and CP-odd contributions. The second study exploits the vector-boson fusion production mechanism to probe the Higgs boson couplings to longitudinally and transversely polarised $W$ and $Z$ bosons in both the production and the decay of the Higgs boson; these couplings have not been directly constrained previously. The polarisation-dependent coupling-strength scale factors are defined as the ratios of the measured polarisation-dependent coupling strengths to those predicted by the Standard Model, and are determined using rate and kinematic information to be $a_L=0.91^{+0.10}_{-0.18}$(stat.)$^{+0.09}_{-0.17}$(syst.) and $a_{T}=1.2 \pm 0.4 $(stat.)$ ^{+0.2}_{-0.3} $(syst.). These coupling strengths are translated into pseudo-observables, resulting in $\kappa_{VV}= 0.91^{+0.10}_{-0.18}$(stat.)$^{+0.09}_{-0.17}$(syst.) and $\epsilon_{VV} =0.13^{+0.28}_{-0.20}$ (stat.)$^{+0.08}_{-0.10}$(syst.). All results are consistent with the Standard Model predictions.

21 data tables

Post-fit NFs and their uncertainties for the Z+jets, top and WW backgrounds. Both sets of normalisation factors differ slightly depending on which (B)SM model is tested, but are consistent within their total uncertainties.

Post-fit event yields in the signal and control regions obtained from the study of the signal strength parameter $\mu^{\text{ggF+2jets}}$. The quoted uncertainties include the theoretical and experimental systematic sources and those due to sample statistics. The fit constrains the total expected yield to the observed yield. The diboson background is split into $W W$ and non-$W W$ contributions.

Breakdown of the main contributions to the total uncertainty on $\tan \alpha$ based on the fit that exploits both shape and rate information. Individual sources of systematic uncertainty are grouped into either the theoretical or the experimental uncertainty. The sum in quadrature of the individual components differs from the total uncertainty due to correlations between the components.

More…

Version 2
Search for resonant $WZ \rightarrow \ell\nu \ell^{\prime}\ell^{\prime}$ production in proton$-$proton collisions at $\mathbf{\sqrt{s} = 13}$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 633, 2023.
Inspire Record 2107940 DOI 10.17182/hepdata.129151

A search for a $WZ$ resonance, in the fully leptonic final state (electrons and muons), is performed using 139 fb$^{-1}$ of data collected at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The results are interpreted in terms of a singly charged Higgs boson of the Georgi$-$Machacek model, produced by $WZ$ fusion, and of a Heavy Vector Triplet, with the resonance produced by $WZ$ fusion or the Drell$-$Yan process. No significant excess over the Standard Model predictions is observed and limits are set on the production cross-section times branching ratio as a function of the resonance mass for these processes.

36 data tables

Comparisons of the data and the expected background distributions of the WZ invariant mass in the Drell-Yan signal region. The background predictions are obtained through a background-only simultaneous fit to the Drell-Yan signal region and the WZ-QCD Drell-Yan and ZZ Drell-Yan control regions. The yields are normalized to the bin width.

Comparisons of the data and the expected background distributions of the WZ invariant mass in the Drell-Yan signal region. The background predictions are obtained through a background-only simultaneous fit to the Drell-Yan signal region and the WZ-QCD Drell-Yan and ZZ Drell-Yan control regions. The yields are normalized to the bin width.

Comparisons of the data and the expected background distributions of the WZ invariant mass in the ANN-based VBF signal region. The background predictions are obtained through a background-only simultaneous fit to the VBF signal region and the WZ-QCD and ZZ VBF control regions. The yields are normalized to the bin width

More…

Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV $pp$ collision data with two top quarks and missing transverse momentum in the final state

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 503, 2023.
Inspire Record 2180393 DOI 10.17182/hepdata.129623

This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a $b$-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in $pp$ collisions at the LHC, using 139 fb$^{-\text{1}}$ of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30$^{+\text{0.13}}_{-\text{0.09}}$) is observed (expected) at 95% confidence level.

40 data tables

Post-fit signal region yields for the tt0L-high and the tt0L-low analyses. The bottom panel shows the statistical significance of the difference between the SM prediction and the observed data in each region. '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

Representative fit distribution in the signal region for the tt1L analysis: each bin of such distribution corresponds to a single SR included in the fit. 'Other' includes contributions from $t\bar{t}W$, $tZ$, $tWZ$ and $t\bar{t}$ (semileptonic) processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

Representative fit distribution in the same flavour leptons signal region for the tt2L analysis: each bin of such distribution, starting from the red arrow, corresponds to a single SR included in the fit. 'FNP' includes the contribution from fake/non-prompt lepton background arising from jets (mainly $\pi/K$, heavy-flavour hadron decays and photon conversion) misidentified as leptons, estimated in a purely data-driven way. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

More…

Searches for new phenomena in events with two leptons, jets, and missing transverse momentum in $139~\text{fb}^{-1}$ of $\sqrt{s}=13~$TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 515, 2023.
Inspire Record 2072870 DOI 10.17182/hepdata.116034

Searches for new phenomena inspired by supersymmetry in final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair, jets, and missing transverse momentum are presented. These searches make use of proton-proton collision data with an integrated luminosity of 139 $\text{fb}^{-1}$, collected during 2015-2018 at a centre-of-mass energy $\sqrt{s}=13 $TeV by the ATLAS detector at the Large Hadron Collider. Two searches target the pair production of charginos and neutralinos. One uses the recursive-jigsaw reconstruction technique to follow up on excesses observed in 36.1 $\text{fb}^{-1}$ of data, and the other uses conventional event variables. The third search targets pair production of coloured supersymmetric particles (squarks or gluinos) decaying through the next-to-lightest neutralino $(\tilde\chi_2^0)$ via a slepton $(\tilde\ell)$ or $Z$ boson into $\ell^+\ell^-\tilde\chi_1^0$, resulting in a kinematic endpoint or peak in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectations. Results are interpreted using simplified models and exclude masses up to 900 GeV for electroweakinos, 1550 GeV for squarks, and 2250 GeV for gluinos.

190 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>EWK SR distributions:</b> <a href="116034?version=1&table=Figure 11a">SR-High_8-EWK</a>; <a href="116034?version=1&table=Figure 11b">SR-ℓℓ𝑏𝑏-EWK</a>; <a href="116034?version=1&table=Figure 11c">SR-Int-EWK</a>; <a href="116034?version=1&table=Figure 11d">SR-Low-EWK</a>; <a href="116034?version=1&table=Figure 11e">SR-OffShell-EWK</a><br/><br/> <b>Strong SR distributions:</b> <a href="116034?version=1&table=Figure 13a">SRC-STR</a>; <a href="116034?version=1&table=Figure 13b">SRLow-STR</a>; <a href="116034?version=1&table=Figure 13c">SRMed-STR</a>; <a href="116034?version=1&table=Figure 13d">SRHigh-STR</a><br/><br/> <b>RJR SR Yields:</b> <a href="116034?version=1&table=Table 16">SR2l-Low-RJR, SR2l-ISR-RJR</a><br/><br/> <b>EWK SR Yields:</b> <a href="116034?version=1&table=Table 18">SR-High_16a-EWK, SR-High_8a-EWK, SR-1J-High-EWK, SR-ℓℓ𝑏𝑏-EWK, SR-High_16b-EWK, SR-High_8b-EWK</a>; <a href="116034?version=1&table=Table 19">SR-Int_a-EWK, SR-Low_a-EWK, SR-Low-2-EWK, SR-OffShell_a-EWK, SR-Int_b-EWK, SR-Low_b-EWK, SR-OffShell_b-EWK </a><br/><br/> <b>Strong SR Yields:</b> <a href="116034?version=1&table=Table 21">SRC-STR, SRLow-STR, SRMed-STR, SRHigh-STR</a>; <a href="116034?version=1&table=Table 22">SRZLow-STR, SRZMed-STR, SRZHigh-STR</a><br/><br/> <b>C1N2 Model Limits:</b> <a href="116034?version=1&table=Table 15a C1N2 Observed Limit">Obs</a>; <a href="116034?version=1&table=Table 15a C1N2 Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 34a C1N2 Expected XS Upper Limit">Upper Limits</a><br/><br/> <b>GMSB Model Limits:</b> <a href="116034?version=1&table=Table 15b GMSB Observed Limit">Obs</a>; <a href="116034?version=1&table=Table 15b GMSB Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 34b GMSB Expected XS Upper Limit">Upper Limits</a><br/><br/> <b>Gluon-Slepton Model Limits:</b> <a href="116034?version=1&table=Figure 16a Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16a Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23a XS Upper Limit">Upper Limits</a><br/><br/> <b>Gluon-Z* Model Limits:</b> <a href="116034?version=1&table=Figure 16b Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16b Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23b XS Upper Limit">Upper Limits</a><br/><br/> <b>Squark-Z* Model Limits:</b> <a href="116034?version=1&table=Figure 16c Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16c Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23c XS Upper Limit">Upper Limits</a><br/><br/> <b>EWK VR distributions:</b> <a href="116034?version=1&table=Figure 4a S_ETmiss in VR-High-Sideband-EWK">VR-High-Sideband-EWK</a>; <a href="116034?version=1&table=Figure 4b S_Etmiss in VR-High-R-EWK">VR-High-R-EWK</a>; <a href="116034?version=1&table=Figure 4c S_Etmiss in VR-1J-High-EWK">VR-1J-High-EWK</a>; <a href="116034?version=1&table=Figure 4d S_Etmiss in VR-llbb-EWK">VR-ℓℓ𝑏𝑏-EWK</a>; <a href="116034?version=1&table=Figure 5a S_Etmiss in VR-Int-EWK">VR-Int-EWK</a>; <a href="116034?version=1&table=Figure 5b S_Etmiss in VR-Low-EWK">VR-Low-EWK</a>; <a href="116034?version=1&table=Figure 5c S_Etmiss in VR-Low-2-EWK">VR-Low-2-EWK</a>; <a href="116034?version=1&table=Figure 5d S_Etmiss in VR-OffShell-EWK">VR-OffShell-EWK</a><br/><br/> <b>Strong VR distributions:</b> <a href="116034?version=1&table=Figure 6a">VRC-STR</a>; <a href="116034?version=1&table=Figure 6b">VRLow-STR</a>; <a href="116034?version=1&table=Figure 6c">VRMed-STR</a>; <a href="116034?version=1&table=Figure 6d">VRHigh-STR</a>; <a href="116034?version=1&table=Figure 8">VR3L-STR</a><br/><br/> <b>Other Strong distributions:</b> <a href="116034?version=1&table=Auxiliary Figure 17a">SRLow-STR + VRLow-STR</a><br/><br/> <b>Other EWK distributions:</b> <a href="116034?version=1&table=Auxiliary Figure 33a Mjj in CR-Z-EWK and SR-Low-EWK">CR-Z-EWK + SR-Low-EWK</a>; <a href="116034?version=1&table=Auxiliary Figure 33b S_ETmiss in CR-Z-met-EWK">CR-Z-met-EWK</a><br/><br/> <b>Strong Signal Cutflows:</b> <a href="116034?version=1&table=Auxiliary Table 30-31 SRC-STR Cutflow">SRC-STR GG_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRMed-STR Cutflow">SRC-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRLow-STR Cutflow">SRLow-STR GG_N2_SLN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRHigh-STR Cutflow">SRC-STR GG_N2_SLN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZLow-STR Cutflow">SRZLow-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZMed-STR Cutflow">SRZMed-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZHigh-STR Cutflow">SRZHigh-STR SS_N2_ZN1</a><br/><br/> <b>EWK Signal Cutflows:</b> <a href="116034?version=1&table=Auxiliary Table 36 SR-OffShell_a-EWK Cutflow"> SR-OffShell_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 37 SR-OffShell_b-EWK Cutflow"> SR-OffShell_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 38 SR-Low_a-EWK Cutflow"> SR-Low_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 39 SR-Low_b-EWK Cutflow"> SR-Low_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 40 SR-Low-2-EWK Cutflow"> SR-Low-2-E</a>; <a href="116034?version=1&table=Auxiliary Table 41 SR-Int_a-EWK Cutflow"> SR-Int_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 42 SR-Int_b-EWK Cutflow"> SR-Int_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 43 SR-High_16a-EWK Cutflow"> SR-High_16a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 44 SR-High_16b-EWK Cutflow"> SR-High_16b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 45 SR-High_8a-EWK Cutflow"> SR-High_8a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 46 SR-High_8b-EWK Cutflow"> SR-High_8b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 47 SR-1J-High-EWK Cutflow"> SR-1J-Hig</a>; <a href="116034?version=1&table=Auxiliary Table 48 SR-llbb-EWK Cutflow"> SR-llbb-EWK</a><br/><br/> <b>EWK Signal Number of MC Events:</b> <a href="116034?version=1&table=Auxiliary Table 36 SR-OffShell_a-EWK Generated"> SR-OffShell_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 37 SR-OffShell_b-EWK Generated"> SR-OffShell_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 38 SR-Low_a-EWK Generated"> SR-Low_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 39 SR-Low_b-EWK Generated"> SR-Low_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 40 SR-Low-2-EWK Generated"> SR-Low-2-E</a>; <a href="116034?version=1&table=Auxiliary Table 41 SR-Int_a-EWK Generated"> SR-Int_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 42 SR-Int_b-EWK Generated"> SR-Int_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 43 SR-High_16a-EWK Generated"> SR-High_16a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 44 SR-High_16b-EWK Generated"> SR-High_16b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 45 SR-High_8a-EWK Generated"> SR-High_8a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 46 SR-High_8b-EWK Generated"> SR-High_8b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 47 SR-1J-High-EWK Generated"> SR-1J-Hig</a>; <a href="116034?version=1&table=Auxiliary Table 48 SR-llbb-EWK Generated"> SR-llbb-EWK</a><br/><br/> <b>SRC-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRC">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRC">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRC">SS_N2_ZN1</a><br/><br/> <b>SRLow-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRLow">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRLow">SS_N2_ZN1</a><br/><br/> <b>SRMed-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRMed">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRMed">SS_N2_ZN1</a><br/><br/> <b>SRHigh-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRHigh">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRHigh">SS_N2_ZN1</a><br/><br/> <b>SRZLow-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZLow">SS_N2_ZN1</a><br/><br/> <b>SRZMed-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZMed">SS_N2_ZN1</a><br/><br/> <b>SRZHigh-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZHigh">SS_N2_ZN1</a><br/><br/> <b>SRC-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRC">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRC">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRC">SS_N2_ZN1</a><br/><br/> <b>SRLow-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRLow">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRLow">SS_N2_ZN1</a><br/><br/> <b>SRMed-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRMed">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRMed">SS_N2_ZN1</a><br/><br/> <b>SRHigh-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRHigh">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRHigh">SS_N2_ZN1</a><br/><br/> <b>SRZLow-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZLow">SS_N2_ZN1</a><br/><br/> <b>SRZMed-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZMed">SS_N2_ZN1</a><br/><br/> <b>SRZHigh-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZHigh">SS_N2_ZN1</a><br/><br/> <b>SR-OffShell_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-OffShell_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-OffShell_a-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-OffShell_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-OffShell_b-EWK">C1N2</a>; <br/><br/> <b>SR-Low_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in C1N2 acc in SR-Low_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in C1N2 acc in SR-Low_a-EWK">C1N2</a>; <br/><br/> <b>SR-Low_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Low_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Low_b-EWK">C1N2</a>; <br/><br/> <b>SR-Int_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Int_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Int_a-EWK">C1N2</a>; <br/><br/> <b>SR-Int_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Int_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Int_b-EWK">C1N2</a>; <br/><br/> <b>SR-High_16a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_16a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_16a-EWK">C1N2</a>; <br/><br/> <b>SR-High_16b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_16b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_16b-EWK">C1N2</a>; <br/><br/> <b>SR-High_8a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_8a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_8a-EWK">C1N2</a>; <br/><br/> <b>SR-High_8b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_8b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_8b-EWK">C1N2</a>; <br/><br/> <b>SR-1J-High-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-1J-High-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-1J-High-EWK">C1N2</a>; <br/><br/> <b>SR-llbb-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-llbb-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-llbb-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-OffShell_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-OffShell_a-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-OffShell_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-OffShell_b-EWK">C1N2</a>; <br/><br/> <b>SR-Low_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in C1N2 eff in SR-Low_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in C1N2 eff in SR-Low_a-EWK">C1N2</a>; <br/><br/> <b>SR-Low_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Low_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Low_b-EWK">C1N2</a>; <br/><br/> <b>SR-Int_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Int_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Int_a-EWK">C1N2</a>; <br/><br/> <b>SR-Int_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Int_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Int_b-EWK">C1N2</a>; <br/><br/> <b>SR-High_16a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_16a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_16a-EWK">C1N2</a>; <br/><br/> <b>SR-High_16b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_16b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_16b-EWK">C1N2</a>; <br/><br/> <b>SR-High_8a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_8a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_8a-EWK">C1N2</a>; <br/><br/> <b>SR-High_8b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_8b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_8b-EWK">C1N2</a>; <br/><br/> <b>SR-1J-High-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-1J-High-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-1J-High-EWK">C1N2</a>; <br/><br/> <b>SR-llbb-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-llbb-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-llbb-EWK">C1N2</a>; <br/><br/> <b>Truth Code snippets</b>, <b>SLHA files</b>, and <b>PYHF json likelihoods</b> are available under "Resources" (purple button on the left) ---- Record created with hepdata_lib 0.7.0: https://zenodo.org/record/4946277 and PYHF: https://doi.org/10.5281/zenodo.1169739

Breakdown of expected and observed yields in the two recursive-jigsaw reconstruction signal regions after a simultaneous fit of the the CRs. The two sets of regions are fit separately. The uncertainties include both statistical and systematic sources.

Breakdown of expected and observed yields in the electroweak search High and $\ell\ell bb$ signal regions after a simultaneous fit to the signal regions and control regions. All statistical and systematic uncertainties are included.

More…

Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 105, 2022.
Inspire Record 1915357 DOI 10.17182/hepdata.107760

This paper presents a measurement of the electroweak production of two jets in association with a $Z\gamma$ pair, with the $Z$ boson decaying into two neutrinos. It also presents a search for invisible or partially invisible decays of a Higgs boson with a mass of 125 GeV produced through vector-boson fusion with a photon in the final state. These results use data from LHC proton-proton collisions at $\sqrt{s}$ = 13 TeV collected with the ATLAS detector and corresponding to an integrated luminosity of 139 fb$^{-1}$. The event signature, shared by all benchmark processes considered for the measurements and searches, is characterized by a significant amount of unbalanced transverse momentum and a photon in the final state, in addition to a pair of forward jets. Electroweak $Z\gamma$ production in association with two jets is observed in this final state with a significance of 5.2 (5.1 expected) standard deviations. The measured fiducial cross-section for this process is 1.31$\pm$0.29 fb. An observed (expected) upper limit of 0.37 ($0.34^{+0.15}_{-0.10}$) at 95% confidence level is set on the branching ratio of a 125 GeV Higgs boson to invisible particles, assuming the Standard Model production cross-section. The signature is also interpreted in the context of decays of a Higgs boson into a photon and a dark photon. An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at 0.018 ($0.017^{+0.007}_{-0.005}$), assuming the Standard Model production cross-section for a 125 GeV Higgs boson.

16 data tables

Post-fit results for all $m_\text{jj}$ SR and CR bins in the EW $Z \gamma + \text{jets}$ cross-section measurement with the $\mu_{Z \gamma_\text{EW}}$ signal normalization floating. The post-fit uncertainties include statistical, experimental, and theory contributions.

Post-fit results for all DNN SR and CR bins in the search for $H \to \text{inv.}$ with the $\mathcal{B}_\text{inv}$ signal normalization set to zero. For the $Z_\text{Rev.Cen.}^\gamma$ CR, the third bin contains all events with DNN output score values of 0.6-1.0. The $H \to \text{inv.}$ signal is scaled to a $\mathcal{B}_\text{inv}$ of 37%. The post-fit uncertainties include statistical, experimental, and theoretical contributions.

Post-fit results for the ten [$m_\text{jj}$, $m_\text{T}$] bins constituting the SR and CRs defined for the dark photon search with the $\mathcal{B}(H \to \gamma \gamma_\text{d})$ signal normalization set to zero. A $H \to \gamma \gamma_\text{d}$ signal is shown for two different mass hypotheses (125 GeV, 500 GeV) and scaled to a branching ratio of 2% and 1%, respectively. The post-fit uncertainties include statistical, experimental, and theoretical contributions.

More…

Search for type-III seesaw heavy leptons in leptonic final states in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 988, 2022.
Inspire Record 2027687 DOI 10.17182/hepdata.114228

A search for the pair production of heavy leptons as predicted by the type-III seesaw mechanism is presented. The search uses proton-proton collision data at a centre-of-mass energy of 13 TeV, corresponding to 139 fb$^{-1}$ of integrated luminosity recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis focuses on final states with three or four electrons or muons from the possible decays of new heavy leptons via intermediate electroweak bosons. No significant deviations above the Standard Model expectation are observed; upper and lower limits on the heavy lepton production cross-section and masses are derived respectively. These results are then combined for the first time with the ones already published by ATLAS using the channel with two leptons in the final state. The observed lower limit on the mass of the type-III seesaw heavy leptons combining two, three and four lepton channels together is 910 GeV at the 95% confidence level.

25 data tables

Expected background yields and observed data after the background-only fit in the SRs.

Distribution of $m_{\mathrm{T},3l}$ in the ZL SR after the background-only fit. The uncertainty on the expected number of background events includes all statistical and systematic post-fit uncertainties with the correlations between various background sources taken into account.

Distribution of $m_{\mathrm{T},3l}$ in the ZL Veto SR after the background-only fit. The uncertainty on the expected number of background events includes all statistical and systematic post-fit uncertainties with the correlations between various background sources taken into account.

More…