This paper presents a model-agnostic search for narrow resonances in the dijet final state in the mass range 1.8-6 TeV. The signal is assumed to produce jets with substructure atypical of jets initiated by light quarks or gluons, with minimal additional assumptions. Search regions are obtained by utilizing multivariate machine-learning methods to select jets with anomalous substructure. A collection of complementary anomaly detection methods - based on unsupervised, weakly supervised, and semisupervised algorithms - are used in order to maximize the sensitivity to unknown new physics signatures. These algorithms are applied to data corresponding to an integrated luminosity of 138 fb$^{-1}$, recorded by the CMS experiment at the LHC, at a center-of-mass energy of 13 TeV. No significant excesses above background expectations are seen. Exclusion limits are derived on the production cross section of benchmark signal models varying in resonance mass, jet mass, and jet substructure. Many of these signatures have not been previously sought, making several of the limits reported on the corresponding benchmark models the first ever. When compared to benchmark inclusive and substructure-based search strategies, the anomaly detection methods are found to significantly enhance the sensitivity to a variety of models.
Exclusion limits on the production cross section of the Q* -> q Wprime model from the different anomaly detection methods
Exclusion limits on the production cross section of the X -> Y Yprime model from the different anomaly detection methods
Exclusion limits on the production cross section of the Wprime -> Bprime t model from the different anomaly detection methods
A search is presented for a heavy resonance decaying into a Z boson and a Higgs (H) boson. The analysis is based on data from proton-proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$, recorded with the CMS experiment in the years 2016-2018. Resonance masses between 1.4 and 5 TeV are considered, resulting in large transverse momenta of the Z and H bosons. Final states that result from Z boson decays to pairs of electrons, muons, or neutrinos are considered. The H boson is reconstructed as a single large-radius jet, recoiling against the Z boson. Machine-learning flavour-tagging techniques are employed to identify decays of a Lorentz-boosted H boson into pairs of charm or bottom quarks, or into four quarks via the intermediate H $\to$ WW* and ZZ* decays. The analysis targets H boson decays that were not generally included in previous searches using the H $\to$$\mathrm{b\bar{b}}$ channel. Compared with previous analyses, the sensitivity for high resonance masses is improved significantly in the channel where at most one b quark is tagged.
The product of signal acceptance and efficiency for signal events as a function of $m_{Z'}$ for the charged-lepton and neutrino channels in the SR. The efficiency is calculated with respect to Z boson decays to charged leptons and neutrinos for the charged-lepton and neutrino channels, respectively. For comparison, the results from the $\leq$ 1 b category of the previous CMS search in the ZH channel are shown as dashed lines.
The product of signal acceptance and efficiency for signal events as a function of $m_{Z'}$ for the charged-lepton and neutrino channels in the SR. The efficiency is calculated with respect to Z boson decays to charged leptons and neutrinos for the charged-lepton and neutrino channels, respectively. For comparison, the results from the $\leq$ 1 b category of the previous CMS search in the ZH channel are shown as dashed lines.
Distributions in $m_{Z'}^{rec}$ for data in the SRs, together with fits of the background functions under the background-only hypothesis for the muon channel. The number of observed events in each bin is divided by the bin width. The signal predictions are shown for different Z' boson masses, normalized to an arbitrary cross section of 1 fb. In the panels below the distributions, the ratios of data to the background function are displayed. The shaded green areas represent the statistical uncertainty from the fit. The $\chi^2$ values per number of degrees of freedom ($\chi^2$/n.d.f.) and the corresponding $p$-values are provided for each fit.
A search is presented for the pair production of new heavy resonances, each decaying into a top quark (t) or antiquark and a gluon (g). The analysis uses data recorded with the CMS detector from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with one muon or electron, multiple jets, and missing transverse momentum are selected. After using a deep neural network to enrich the data sample with signal-like events, distributions in the scalar sum of the transverse momenta of all reconstructed objects are analyzed in the search for a signal. No significant deviations from the standard model prediction are found. Upper limits at 95% confidence level are set on the product of cross section and branching fraction squared for the pair production of excited top quarks in the $\mathrm{t^*}$ $\to$ tg decay channel. The upper limits range from 120 to 0.8 fb for a $\mathrm{t^*}$ with spin-1/2 and from 15 to 1.0 fb for a $\mathrm{t^*}$ with spin-3/2. These correspond to mass exclusion limits up to 1050 and 1700 GeV for spin-1/2 and spin-3/2 $\mathrm{t^*}$ particles, respectively. These are the most stringent limits to date on the existence of $\mathrm{t^*}$ $\to$ tg resonances.
Expected and observed 95% CL upper limits on the product of the $t^{*} \overline{t}^{*}$ production cross section and the branching fraction squared $BR^2(t^{*} \rightarrow tg)$ for a spin-1/2 $t^{*}$ as a function of $m_{t^{*}}$. The inner (green) and outer (yellow) bands give the central probability intervals containing 68 and 95% of the expected upper limits under the background-only hypothesis. The cross section predicted by theory, following an EFT approach, is shown in blue, assuming $BR(t^{*} \rightarrow tg)=1$.
Expected and observed 95% CL upper limits on the product of the $t^{*} \overline{t}^{*}$ production cross section and the branching fraction squared $BR^2(t^{*} \rightarrow tg)$ for a spin-3/2 $t^{*}$ as a function of $m_{t^{*}}$. The inner (green) and outer (yellow) bands give the central probability intervals containing 68 and 95% of the expected upper limits under the background-only hypothesis. The cross section predicted by theory, following an EFT approach, is shown in blue, assuming $BR(t^{*} \rightarrow tg)=1$. The results of the previous CMS analysis, using data corresponding to an integrated luminosity of 35.9 $fb^{-1}$, are shown in red.
Distributions in $S_T$ in the SR for the muon channel, after a background-only fit to the data. The signal distributions are scaled to the cross section predicted by the theory. The hatched bands show the post-fit uncertainty band, combining all sources of uncertainty. The ratio of data to the background predictions is shown in the panels below the distributions.
The production of (multi-)strange hadrons is measured at midrapidity in proton--proton collisions at $\sqrt{s} = 13$ TeV as a function of the local charged-particle multiplicity in the pseudorapidity interval ${|\eta|<0.5}$ and of the very-forward energy measured by the ALICE Zero-Degree Calorimeters. The latter provides information on the effective energy, i.e. the energy available for particle production in the collision once subtracted from the centre-of-mass energy. The yields of K$^0_{\rm S}$, $\Lambda+{\bar \Lambda}$, and $\Xi^{-}+\overline{\Xi}^{+}$ per charged-particle increase with the effective energy. In addition, this work exploits a multi-differential approach to decouple the roles of local multiplicity and effective energy in such an enhancement. The results presented in this article provide new insights into the interplay between global properties of the collision, such as the initial available energy in the event, and the locally produced final hadronic state, connected to the charged-particle multiplicity at midrapidity. Notably, a strong increase of strange baryon production with effective energy is observed for fixed charged-particle multiplicity at midrapidity. These results are discussed within the context of existing phenomenological models of hadronisation implemented in different tunes of the PYTHIA 8 event generator.
Self-normalised ZN energy as a function of the self-normalised charged-particle-multiplicity in pp collisions at $\sqrt{s}$ = 13 TeV in the standalone classification (V0M event classes).
Self-normalised ZN energy as a function of the self-normalised charged-particle-multiplicity in pp collisions at $\sqrt{s}$ = 13 TeV in the high-local-multiplicity classification (V0M+SPDClusters event classes).
Self-normalised ZN energy as a function of the self-normalised charged-particle-multiplicity in pp collisions at $\sqrt{s}$ = 13 TeV in the low-local-multiplicity classification (V0M+SPDClusters event classes).
The results of a model-independent search for the pair production of new bosons within a mass range of 0.21 $\lt m\lt$ 60 GeV, are presented. This study utilizes events with a four-muon final state. We use two data sets, comprising 41.5 fb$^{-1}$ and 59.7 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV, recorded in 2017 and 2018 by the CMS experiment at the CERN LHC. The study of the 2018 data set includes a search for displaced signatures of a new boson within the proper decay length range of $0 \lt c\tau \lt$ 100 $\mu$m. Our results are combined with a previous CMS result, based on 35.9 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV collected in 2016. No significant deviation from the expected background is observed. Results are presented in terms of a model-independent upper limit on the product of cross section, branching fraction, and acceptance. The findings are interpreted across various benchmark models, such as an axion-like particle model, a vector portal model, the next-to-minimal supersymmetric standard model, and a dark supersymmetric scenario, including those predicting a non-negligible proper decay length of the new boson. In all considered scenarios, substantial portions of the parameter space are excluded, expanding upon prior results.
The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the 2017 analysis. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search
The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the 2018 analysis. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search
The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the combined 2017 and 2018 analyses. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search
An analysis of the production of a Higgs boson ($H$) in association with a top quark-antiquark pair ($\mathrm{t\bar{t}}H$) or a single top quark ($tH$) is presented. The Higgs boson decay into a bottom quark-antiquark pair ($H \to\mathrm{b\bar{b}}$) is targeted, and three different final states of the top quark decays are considered, defined by the number of leptons (electrons or muons) in the event. The analysis utilises proton-proton collision data collected at the CERN LHC with the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016-2018, which correspond to an integrated luminosity of 138 fb$^{-1}$. The observed $\mathrm{t\bar{t}}H$ production rate relative to the standard model expectation is 0.33 $\pm$ 0.26 = 0.33 $\pm$ 0.17 (stat) $\pm$ 0.21 (syst). Additionally, the $\mathrm{t\bar{t}}H$ production rate is determined in intervals of Higgs boson transverse momentum. An upper limit at 95% confidence level is set on the tH production rate of 14.6 times the standard model prediction, with an expectation of 19.3 $^{+9.2}_{-6.0}$. Finally, constraints are derived on the strength and structure of the coupling between the Higgs boson and the top quark from simultaneous extraction of the $\mathrm{t\bar{t}}H$ and $tH$ production rates, and the results are combined with those obtained in other Higgs boson decay channels.
Best fit results of the ttH signal-strength modifier in each channel, in each year, and in the combination of all channels and years. Uncertainties are correlated between the channels and years.
Likelihood-ratio test statistic as a function of the ttH strength modifiers $\mu_{ttH}$ and the $ttB$ background normalisation. The observed best fit point is $(\mu_{ttH}, ttB) = (0.33, 1.19)$.
Best fit results of the ttH signal-strength modifiers in the different Higgs pT bins of the STXS measurement.
The Large Hadron Collider at CERN, delivering proton-proton collisions at much higher energies and far higher luminosities than previous machines, has enabled a comprehensive programme of measurements of the standard model (SM) processes by the CMS experiment. These unprecedented capabilities facilitate precise measurements of the properties of a wide array of processes, the most fundamental being cross sections. The discovery of the Higgs boson and the measurement of its mass became the keystone of the SM. Knowledge of the mass of the Higgs boson allows precision comparisons of the predictions of the SM with the corresponding measurements. These measurements span the range from one of the most copious SM processes, the total inelastic cross section for proton-proton interactions, to the rarest ones, such as Higgs boson pair production. They cover the production of Higgs bosons, top quarks, single and multibosons, and hadronic jets. Associated parameters, such as coupling constants, are also measured. These cross section measurements can be pictured as a descending stairway, on which the lowest steps represent the rarest processes allowed by the SM, some never seen before.
Cross sections of selected high-energy processes measured by the CMS experiment. Measurements performed at different LHC pp collision energies are marked by unique symbols and the coloured bands indicate the combined statistical and systematic uncertainty of the measurement. Grey bands indicate the uncertainty of the corresponding SM theory predictions. Shaded hashed bars indicate the excluded cross section region for a production process with the measured 95% CL upper limit on the process indicated by the solid line of the same colour.
Summary of production cross section measurements involving top quarks. Measurements performed at different LHC pp collision energies are marked by unique symbols and the coloured bands indicate the combined statistical and systematic uncertainty of the measurement. Grey bands indicate the uncertainty of the corresponding SM theory predictions. Shaded hashed bars indicate the excluded cross section region for a production process with the measured 95% C.L. upper limit on the process indicated by the solid line of the same colour.
Summary of measurements of jet cross sections and electroweak processes in association with jets. Measurements performed at different LHC pp collision energies are marked by unique symbols and the coloured bands indicate the combined statistical and systematic uncertainty of the measurement. Grey bands indicate the uncertainty of the corresponding SM theory predictions. Shaded hashed bars indicate the excluded cross section region for a production process with the measured 95% C.L. upper limit on the process indicated by the solid line of the same colour. Versions of these plots in pdf format with links to the publications can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-23-004/.
A search is presented for the pair production of higgsinos $\tilde{\chi}$ in gauge-mediated supersymmetry models, where the lightest neutralinos $\tilde{\chi}_1^0$ decay into a light gravitino $\tilde{G}$ in association with either a Higgs $h$ or a $Z$ boson. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. It targets final states in which a Higgs boson decays into a photon pair, while the other Higgs or $Z$ boson decays into a $b\bar{b}$ pair, with missing transverse momentum associated with the two gravitinos. Search regions dependent on the amount of missing transverse momentum are defined by the requirements that the diphoton mass should be consistent with the mass of the Higgs boson, and the $b\bar{b}$ mass with the mass of the Higgs or $Z$ boson. The main backgrounds are estimated with data-driven methods using the sidebands of the diphoton mass distribution. No excesses beyond Standard Model expectations are observed and higgsinos with masses up to 320 GeV are excluded, assuming a branching fraction of 100% for $\tilde{\chi}_1^0\rightarrow h\tilde{G}$. This analysis excludes higgsinos with masses of 130 GeV for branching fractions to $h\tilde{G}$ as low as 36%, thus providing complementarity to previous ATLAS searches in final states with multiple leptons or multiple $b$-jets, targeting different decays of the electroweak bosons.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Histograms:</b><ul> <li><a href=?table=Distribution1>Figure 3a: $m_{\gamma\gamma}$ Distribution in VR1</a> <li><a href=?table=Distribution2>Figure 3b: $E_{\mathrm{T}}^{\mathrm{miss}}$ Distribution in VR1</a> <li><a href=?table=Distribution3>Figure 3c: $m_{\gamma\gamma}$ Distribution in VR2</a> <li><a href=?table=Distribution4>Figure 3d: $E_{\mathrm{T}}^{\mathrm{miss}}$ Distribution in VR2</a> <li><a href=?table=Distribution5>Figure 4a: N-1 $m_{\gamma\gamma}$ Distribution for SR1h</a> <li><a href=?table=Distribution6>Figure 4b: N-1 $m_{\gamma\gamma}$ Distribution for SR1Z</a> <li><a href=?table=Distribution7>Figure 4c: N-1 $m_{\gamma\gamma}$ Distribution for SR2</a> <li><a href=?table=Distribution8>Auxiliary Figure 1: Signal and Validation Region Yields</a> </ul> <b>Tables:</b><ul> <li><a href=?table=YieldsTable1>Table 3: Signal Region Yields & Model-independent Limits</a> <li><a href=?table=Cutflow1>Auxiliary Table 1: Benchmark Signal Cutflows</a> </ul> <b>Cross section limits:</b><ul> <li><a href=?table=X-sectionU.L.1>Figure 5: 1D Cross-section Limits</a> <li><a href=?table=X-sectionU.L.2>Auxiliary Figure 3: 2D Cross-section Limits</a> </ul> <b>2D CL limits:</b><ul> <li><a href=?table=Exclusioncontour1>Figure 6: Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour2>Figure 6: $+1\sigma$ Variation for Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour3>Figure 6: $-1\sigma$ Variation for Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour4>Figure 6: Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour5>Figure 6: $+1\sigma$ Variation for Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour6>Figure 6: $-1\sigma$ Variation for Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> </ul> <b>2D Acceptance and Efficiency maps:</b><ul> <li><a href=?table=Acceptance1>Auxiliary Figure 4a: Acceptances SR1h</a> <li><a href=?table=Acceptance2>Auxiliary Figure 4b: Acceptances SR1Z</a> <li><a href=?table=Acceptance3>Auxiliary Figure 4c: Acceptances SR2</a> <li><a href=?table=Efficiency1>Auxiliary Figure 5a: Efficiencies SR1h</a> <li><a href=?table=Efficiency2>Auxiliary Figure 5b: Efficiencies SR1Z</a> <li><a href=?table=Efficiency3>Auxiliary Figure 5c: Efficiencies SR2</a> </ul>
Distribution of the diphoton invariant mass in validation region VR1. The solid histograms are stacked to show the SM expectations after the 2×2D background estimation technique is applied. Background and signal predictions are normalised to the luminosity. The background category "h (other)" includes events originating from VBF, Vh, ggF, thq, thW and bb̄h, all subdominant in this signature. Statistical and systematic uncertainties are indicated by the shaded area. The lower panel of each plot shows the ratio of the data to the SM prediction for the respective bin. The first and last bins include the underflows and overflows respectively.
Distribution of the missing transverse momentum in validation region VR1. The solid histograms are stacked to show the SM expectations after the 2×2D background estimation technique is applied. Background and signal predictions are normalised to the luminosity. The background category "h (other)" includes events originating from VBF, Vh, ggF, thq, thW and bb̄h, all subdominant in this signature. Statistical and systematic uncertainties are indicated by the shaded area. The lower panel of each plot shows the ratio of the data to the SM prediction for the respective bin. The first and last bins include the underflows and overflows respectively.
The J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb$^{-1}$. Normalizing to the J/$\psi$$\to$$\mu^+\mu^-$ decay mode leads to a branching fraction [10.1 $^{+3.3}_{-2.7}$ (stat) $\pm$ 0.4 (syst)] $\times$ 10$^{-7}$, a value that is consistent with the standard model prediction.
$\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu$ branching fraction
$\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu)$ / $\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu)$ ratio
The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC using $140\,\mathrm{fb^{-1}}$ of ATLAS data. The total cross-sections are determined to be $σ(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $σ(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $σ(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=σ(tq)/σ(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The predictions at next-to-next-to-leading-order in quantum chromodynamics are in good agreement with these measurements. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared with the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measured cross-sections are interpreted in an effective field theory approach, setting limits at the 95% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{Qq}^{3,1}/Λ^2 < 0.06$ and $-0.87 < C_{ϕQ}^{3}/Λ^2 < 1.42$. The constraint $|V_{tb}|>0.95$ at the 95% confidence level is derived from the measured value of $σ(tq+\bar{t}q)$. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces.
The 17 variables used for the training of the NN ordered by their discriminating power. The jet that is not \(b\)-tagged is referred to as the untagged jet. The charged lepton is denoted \(\ell\). The sphericity tensor \(S^{\alpha\beta}\) used to define the sphericity \(S\) is formed with the three-momenta \(\vec{p}_i\) of the reconstructed objects, namely the jets, the charged lepton and the reconstructed neutrino. The tensor is given by \(S^{\alpha\beta}=\frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\vec{p}_i|^2}\) where \(\alpha\) and \(\beta\) correspond to the spatial components $x$, $y$ and $z$.
The impact of different groups of systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\), \(\sigma(tq + \bar t q)\) and \(R_t\), given in %.
The impact of the eight most important systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\) and \(\sigma(tq + \bar t q)\), given in %. The sequence of the uncertainties is given by the impact on \(\sigma(tq + \bar t q)\)