Date

Version 2
Measurement of the production cross-section of $J/\psi$ and $\psi(2$S$)$ mesons in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 84 (2024) 169, 2024.
Inspire Record 2705040 DOI 10.17182/hepdata.145071

Measurements of the differential production cross-sections of prompt and non-prompt $J/\psi$ and $\psi(2$S$)$ mesons with transverse momenta between 8 and 360 GeV and rapidity in the range $|y|<2$ are reported. Furthermore, measurements of the non-prompt fractions of $J/\psi$ and $\psi(2$S$)$, and the prompt and non-prompt $\psi(2$S$)$-to-$J/\psi$ production ratios, are presented. The analysis is performed using 140 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data recorded by the ATLAS detector at the LHC during the years 2015-2018.

9 data tables

Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of non-prompt $J/\psi$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of prompt $\psi(2S)$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.

More…

Charged-hadron production in $pp$, $p$+Pb, Pb+Pb, and Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 074, 2023.
Inspire Record 2601282 DOI 10.17182/hepdata.135676

This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.

140 data tables

- - - - - - - - - - - - - - - - - - - - <br><b>charged-hadron spectra:</b> <br><i>pp reference:</i>&nbsp;&nbsp; <a href="?version=1&table=Table1">for p+Pb</a>&nbsp;&nbsp; <a href="?version=1&table=Table10">for Pb+Pb</a>&nbsp;&nbsp; <a href="?version=1&table=Table19">for Xe+Xe</a>&nbsp;&nbsp; <br><i>p+Pb:</i>&nbsp;&nbsp; <a href="?version=1&table=Table2">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table3">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table4">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table5">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table6">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table7">40-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table8">60-90%</a>&nbsp;&nbsp; <a href="?version=1&table=Table9">0-90%</a>&nbsp;&nbsp; <br><i>Pb+Pb:</i>&nbsp;&nbsp; <a href="?version=1&table=Table11">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table12">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table13">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table14">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table15">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table16">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table17">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table18">60-80%</a>&nbsp;&nbsp; <br><i>Xe+Xe:</i>&nbsp;&nbsp; <a href="?version=1&table=Table20">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table21">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table22">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table23">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table24">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table25">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table26">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table27">60-80%</a>&nbsp;&nbsp; </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (p<sub>T</sub>):</b> <br><i>R<sub>pPb</sub>:</i>&nbsp;&nbsp; <a href="?version=1&table=Table28">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table29">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table30">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table31">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table32">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table33">40-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table34">60-90%</a>&nbsp;&nbsp; <a href="?version=1&table=Table35">0-90%</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Pb+Pb):</i>&nbsp;&nbsp; <a href="?version=1&table=Table36">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table37">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table38">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table39">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table40">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table41">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table42">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table43">60-80%</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Xe+Xe):</i>&nbsp;&nbsp; <a href="?version=1&table=Table44">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table45">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table46">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table47">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table48">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table49">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table50">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table51">60-80%</a>&nbsp;&nbsp; </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (y*/eta):</b> <br><i>R<sub>pPb</sub>:</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table52">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table53">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table54">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table55">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table56">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table57">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table58">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table59">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table60">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table61">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table62">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table63">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table64">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table65">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table66">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table67">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table68">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table69">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table70">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table71">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-60%:&nbsp;&nbsp; <a href="?version=1&table=Table72">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table73">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table74">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table75">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-90%:&nbsp;&nbsp; <a href="?version=1&table=Table76">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table77">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table78">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table79">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;0-90%:&nbsp;&nbsp; <a href="?version=1&table=Table80">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table81">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table82">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table83">15.1-17.3GeV</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Pb+Pb):</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table84">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table85">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table86">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table87">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table88">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table89">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table90">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table91">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table92">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table93">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table94">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table95">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table96">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table97">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table98">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table99">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table100">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table101">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table102">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table103">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-50%:&nbsp;&nbsp; <a href="?version=1&table=Table104">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table105">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table106">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table107">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;50-60%:&nbsp;&nbsp; <a href="?version=1&table=Table108">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table109">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table110">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table111">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-80%:&nbsp;&nbsp; <a href="?version=1&table=Table112">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table113">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table114">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table115">60-95GeV</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Xe+Xe):</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table116">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table117">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table118">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table119">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table120">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table121">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table122">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table123">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table124">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table125">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table126">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table127">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table128">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table129">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table130">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-50%:&nbsp;&nbsp; <a href="?version=1&table=Table131">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table132">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table133">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;50-60%:&nbsp;&nbsp; <a href="?version=1&table=Table134">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table135">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table136">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-80%:&nbsp;&nbsp; <a href="?version=1&table=Table137">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table138">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table139">20-23GeV</a>&nbsp;&nbsp; <br>- - - - - - - - - - - - - - - - - - - -

Charged-hadron cross-section in pp collisions. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.

Charged-hadron spectrum in the centrality interval 0-5% for p+Pb, divided by &#9001;TPPB&#9002;. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.

More…

Probing Strangeness Canonical Ensemble with $K^{-}$, $\phi(1020)$ and $\Xi^{-}$ Production in Au+Au Collisions at ${\sqrt{s_{NN}} = {3\,GeV}}$

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 831 (2022) 137152, 2022.
Inspire Record 1897327 DOI 10.17182/hepdata.110657

We report the first multi-differential measurements of strange hadrons of $K^{-}$, $\phi$ and $\Xi^{-}$ yields as well as the ratios of $\phi/K^-$ and $\phi/\Xi^-$ in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{3\,GeV}}$ with the STAR experiment fixed target configuration at RHIC. The $\phi$ mesons and $\Xi^{-}$ hyperons are measured through hadronic decay channels, $\phi\rightarrow K^+K^-$ and $\Xi^-\rightarrow \Lambda\pi^-$. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The $4\pi$ yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the $\phi/K^-$ and $\phi/\Xi^-$ ratios while the result of canonical ensemble (CE) calculations reproduce $\phi/K^-$, with the correlation length $r_c \sim 2.7$ fm, and $\phi/\Xi^-$, $r_c \sim 4.2$ fm, for the 0-10% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at $\rm{3\,GeV}$ implies a rather different medium property at high baryon density.

12 data tables

$K^-$ (a), invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

$\phi$ meson (b) invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

$\Xi^-$ (c) invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

More…

Measurement of $\phi $ meson production in $p + p$ interactions at 40, 80 and $158 \, \hbox {GeV}/c$ with the NA61/SHINE spectrometer at the CERN SPS

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Antićić, T. ; et al.
Eur.Phys.J.C 80 (2020) 199, 2020.
Inspire Record 1749613 DOI 10.17182/hepdata.93228

Results on $\phi$ meson production in inelastic p+p collisions at CERN SPS energies are presented. They are derived from data collected by the NA61/SHINE fixed target experiment, by means of invariant mass spectra fits in the $\phi \to K^+K^-$ decay channel. They include the first ever measured double differential spectra of $\phi$ mesons as a function of rapidity $y$ and transverse momentum $p_T$ for proton beam momenta of 80 GeV/c and 158 GeV/c, as well as single differential spectra of $y$ or $p_T$ for beam momentum of 40 GeV/c. The corresponding total $\phi$ yields per inelastic p+p event are obtained. These results are compared with existing data on $\phi$ meson production in p+p collisions. The comparison shows consistency but superior accuracy of the present measurements. The emission of $\phi$ mesons in p+p reactions is confronted with that occurring in Pb+Pb collisions, and the experimental results are compared with model predictions. It appears that none of the considered models can properly describe all the experimental observables.

17 data tables

Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 158 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.

Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 80 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.

Transverse momentum $p_T$ spectrum of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 40 GeV/c, in a broad rapidity $y$ bin of (0, 1.5).

More…

Measurement of the $W+b$-jet and $W+c$-jet differential production cross sections in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 743 (2015) 6-14, 2015.
Inspire Record 1334689 DOI 10.17182/hepdata.73191

We present a measurement of the cross sections for the associated production of a $W$ boson with at least one heavy quark jet, $b$ or $c$, in proton-antiproton collisions. Data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ recorded with the D0 detector at the Fermilab Tevatron \ppbar Collider at $\sqrt{s}=1.96$ TeV are used to measure the cross sections differentially as a function of the jet transverse momenta in the range 20 to 150 GeV. These results are compared to calculations of perturbative QCD theory as well as predictions from Monte Carlo generators.

3 data tables

The $W + b$-jet production cross sections times $W \to \mu\nu$ branching fraction, ${\rm d}\sigma/{\rm d}p_T^{\rm jet}$.

The $W + c$-jet production cross sections times $W \to \mu\nu$ branching fraction, ${\rm d}\sigma/{\rm d}p_T^{\rm jet}$.

The $\sigma(W+c)/\sigma(W+b)$ cross section ratio in bins of $c(b)$-jet $p_T$.


Measurement of the differential $\gamma+2~b$-jet cross section and the ratio $\sigma$($\gamma+2~b$-jets)/$\sigma$($\gamma+b$-jet) in $p\bar{p}$ collisions at $\sqrt{s}$=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 737 (2014) 357-365, 2014.
Inspire Record 1296263 DOI 10.17182/hepdata.64151

We present the first measurements of the differential cross section $d\sigma/dp_{T}^{\gamma}$ for the production of an isolated photon in association with at least two $b$-quark jets. The measurements consider photons with rapidities $|y^\gamma| < 1.0$ and transverse momenta $30 < p_{T}^{\gamma} < 200$~\GeV. The $b$-quark jets are required to have $p_T^{jet}>15$ GeV and $| y^{jet}| < 1.5$. The ratio of differential production cross sections for $\gamma+2~b$-jets to $\gamma+b$-jet as a function of $p_{T}^{\gamma}$ is also presented. The results are based on the proton-antiproton collision data at $\sqrt{s}=$1.96~\TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured cross sections and their ratios are compared to the next-to-leading order perturbative QCD calculations as well as predictions based on the $k_{T}$-factorization approach and those from the SHERPA and PYTHIA Monte Carlo event generators.

3 data tables

The differential GAMMA+2BJET production cross section, DSIG/DPT(GAMMA), in bins of PT(GAMMA).

The differential GAMMA+BJET production cross section, DSIG/DPT(GAMMA), in bins of PT(GAMMA).

The SIG(GAMMA 2BJET)/SIG(GAMMA BJET) cross section ratio in bins of PT(GAMMA).


Measurement of Differential $t\bar{t}$ Production Cross Sections in $p\bar{p}$ Collisions

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 90 (2014) 092006, 2014.
Inspire Record 1278493 DOI 10.17182/hepdata.64755

The production of top quark-antiquark pair events in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV is studied as a function of the transverse momentum and absolute value of the rapidity of the top quarks as well as of the invariant mass of the $t\bar{t}$ pair. We select events containing an isolated lepton, a large imbalance in transverse momentum, and four or more jets with at least one jet identified to originate from a $b$ quark. The data sample corresponds to 9.7 fb$^{-1}$ of integrated luminosity recorded with the D0 detector during Run II of the Fermilab Tevatron Collider. Observed differential cross sections are consistent with standard model predictions.

4 data tables

The inclusive TOP TOPBAR production cross section.

The differential cross section as a function of the invariant mass of the top quark-antiquark pair, M(TOP + TOPBAR).

The differential cross section as a function of the absolute rapidity of the top quark/antiquark, ABS(YRAP(TOP/TOPBAR)).

More…

Measurement of the differential cross section of photon plus jet production in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 88 (2013) 072008, 2013.
Inspire Record 1247673 DOI 10.17182/hepdata.38434

We study the process of associated photon and jet production, p+pbar --> photon + jet + X, using 8.7 fb^-1 of integrated luminosity collected by the D0 detector at the Fermilab Tevatron Collider at a center-of-mass energy sqrt{s}=1.96 TeV. Photons are reconstructed with rapidity |y^gamma| <1.0 or 1.5<|y^{gamma}| < 2.5 and transverse momentum pT^gamma GeV. The highest-p_T jet is required to be in one of four rapidity regions up to |y^{jet}|< 3.2. For each rapidity configuration we measure the differential cross sections in pT_gamma separately for events with the same sign (y^{gamma} y^{jet}}>0) and opposite sign (y^{gamma} y^{jet}<=0) of photon and jet rapidities. We compare the measured triple differential cross sections, d^3 sigma / d pT_gamma y^{gamma} y^{jet}, to next-to-leading order (NLO) perturbative QCD calculations using different sets of parton distribution functions and to predictions from the SHERPA and PYTHIA Monte Carlo event generators. The NLO calculations are found to be in general agreement with the data, but do not describe all kinematic regions.

16 data tables

The triple differential GAMMA+JET cross section for |y_gamma| < 1.0, |y_jet| <= 0.8 and y_gamma*y_jet > 0 A common 6.8% nomalization is included in the (sys) error.

The triple differential GAMMA+JET cross section for |y_gamma| < 1.0, |y_jet| 0.8 TO 1.6 and y_gamma*y_jet > 0 A common 6.8% nomalization is included in the (sys) error.

The triple differential GAMMA+JET cross section for |y_gamma| < 1.0, |y_jet| 1.6 TO 2.4 and y_gamma*y_jet > 0 A common 6.8% nomalization is included in the (sys) error.

More…

Studies of W boson plus jets production in p\bar{p} collisions at sqrt(s)=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 88 (2013) 092001, 2013.
Inspire Record 1221252 DOI 10.17182/hepdata.61813

We present a comprehensive analysis of inclusive W(\to e\nu)+n-jet (n\geq 1,2,3,4) production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV at the Tevatron collider using a 3.7 fb^{-1} dataset collected by the D0 detector. Differential cross sections are presented as a function of the jet rapidities (y), lepton transverse momentum (p_T) and pseudorapidity (\eta), the scalar sum of the transverse energies of the W boson and all jets (H_T), leading dijet p_T and invariant mass, dijet rapidity separations for a variety of jet pairings for p_T-ordered and angular-ordered jets, dijet opening angle, dijet azimuthal angular separations for p_T-ordered and angular-ordered jets, and W boson transverse momentum. The mean number of jets in an event containing a W boson is measured as a function of H_T, and as a function of the rapidity separations between the two highest-p_T jets and between the most widely separated jets in rapidity. Finally, the probability for third-jet emission in events containing a W boson and at least two jets is studied by measuring the fraction of events in the inclusive W+2-jet sample that contain a third jet over a p_T threshold. The analysis employs a regularized singular value decomposition technique to accurately correct for detector effects and for the presence of backgrounds. The corrected data are compared to particle level next-to-leading order perturbative QCD predictions, predictions from all-order resummation approaches, and a variety of leading-order and matrix-element plus parton-shower event generators. Regions of the phase space where there is agreement or disagreement with the data are discussed for the different models tested.

42 data tables

Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of leading jet rapidity for events with one or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.

Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of second jet rapidity for events with two or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.

Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of third jet rapidity for events with three or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.

More…

Measurement of the differential cross sections for isolated direct photon pair production in $p \bar p$ collisions at $\sqrt{s} = 1.96$ TeV

The D0 collaboration Abazov, V.M. ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 725 (2013) 6-14, 2013.
Inspire Record 1215307 DOI 10.17182/hepdata.60556

We present measurements of direct photon pair production cross sections using 8.5 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron $p \bar p$ collider. The results are presented as differential distributions of the photon pair invariant mass $d\sigma/dM_{\gamma \gamma}$, pair transverse momentum $d \sigma /dp^{\gamma \gamma}_T$, azimuthal angle between the photons $d\sigma/d\Delta \phi_{\gamma \gamma}$, and polar scattering angle in the Collins-Soper frame $d\sigma /d|\cos \theta^*|$. Measurements are performed for isolated photons with transverse momenta $p^{\gamma}_T>18 ~(17)$ GeV for the leading (next-to-leading) photon in $p_T$, pseudorapidities $|\eta^{\gamma}|<0.9$, and a separation in $\eta-\phi$ space $\Delta\mathcal R_{\gamma\gamma} > 0.4$. We present comparisons with the predictions from Monte Carlo event generators {\sc diphox} and {\sc resbos} implementing QCD calculations at next-to-leading order, $2\gamma${\sc nnlo} at next-to-next-to-leading order, and {\sc sherpa} using matrix elements with higher-order real emissions matched to parton shower.

10 data tables

The measured differential distribution in the two-photon mass;.

The measured differential distribution in the two-photon transverse momentum;.

The measured differential distribution in the azimuthal angular separation of the two photons;.

More…