Date

Measurement of the $W \to μν_μ$ cross-sections as a function of the muon transverse momentum in $pp$ collisions at 5.02 TeV

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
LHCb-PAPER-2025-031, 2025.
Inspire Record 2972386 DOI 10.17182/hepdata.165429

The $pp \to W^{\pm} (\to μ^{\pm} ν_μ) X$ cross-sections are measured at a proton-proton centre-of-mass energy $\sqrt{s} = 5.02$ TeV using a dataset corresponding to an integrated luminosity of 100 pb$^{-1}$ recorded by the LHCb experiment. Considering muons in the pseudorapidity range $2.2 < η< 4.4$, the cross-sections are measured differentially in twelve intervals of muon transverse momentum between $28 < p_\mathrm{T} < 52$ GeV. Integrated over $p_\mathrm{T}$, the measured cross-sections are \begin{align*} σ_{W^+ \to μ^+ ν_μ} &= 300.9 \pm 2.4 \pm 3.8 \pm 6.0~\text{pb}, \\ σ_{W^- \to μ^- \barν_μ} &= 236.9 \pm 2.1 \pm 2.7 \pm 4.7~\text{pb}, \end{align*} where the first uncertainties are statistical, the second are systematic, and the third are associated with the luminosity calibration. These integrated results are consistent with theoretical predictions. This analysis introduces a new method to determine the $W$-boson mass using the measured differential cross-sections corrected for detector effects. The measurement is performed on this statistically limited dataset as a proof of principle and yields \begin{align*} m_W = 80369 \pm 130 \pm 33~\text{MeV}, \end{align*} where the first uncertainty is experimental and the second is theoretical.

5 data tables

The measured differential cross sections ($d\sigma/dp_T$) for $W^+$. The first systematic uncertainty is statistical and the second is systematic.

The measured differential cross sections ($d\sigma/dp_T$) for $W^-$. The first systematic uncertainty is statistical and the second is systematic.

The correlation matrix corresponding to the statistical uncertainties on the differential cross-section ($d\sigma/dp_T$) fit results for $W^+$. To combine with $W^-$, use the rows and columns ordered as $W^+$ and then $W^-$. Assume no correlation in the statistical uncertainties between $W^+$ and $W^-$ (zero entries in the off-diagonal blocks).

More…

Energy-scaling behavior of intrinsic transverse momentum parameters in Drell-Yan simulation

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 111 (2025) 072003, 2025.
Inspire Record 2839223 DOI 10.17182/hepdata.154142

An analysis is presented based on models of the intrinsic transverse momentum (intrinsic $k_\mathrm{T}$) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans three orders of magnitude in center-of-mass energy and two orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic $k_\mathrm{T}$ parameters, independent of the dilepton invariant mass at a given center-of-mass energy.

45 data tables

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP5 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP4 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP3 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

More…

Version 2
Measurement of the top quark pole mass using $\mathrm{t\bar{t}}$+jet events in the dilepton final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 077, 2023.
Inspire Record 2106483 DOI 10.17182/hepdata.127990

A measurement of the top quark pole mass $m_\mathrm{t}^\text{pole}$ in events where a top quark-antiquark pair ($\mathrm{t\bar{t}}$) is produced in association with at least one additional jet ($\mathrm{t\bar{t}}$+jet) is presented. This analysis is performed using proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb$^{-1}$. Events with two opposite-sign leptons in the final state (e$^+$e$^-$, $\mu^+\mu^-$, e$^\pm\mu^\mp$) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the $\mathrm{t\bar{t}}$+jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in $m_\mathrm{t}^\text{pole}$ = 172.93 $\pm$ 1.36 GeV.

20 data tables

Absolute differential cross section as a function of the rho observable at parton level.

Absolute differential cross section as a function of the rho observable at parton level.

Covariance matrix for the total uncertainty for the measurement of the absolute differential cross section as a function of the rho observable at parton level.

More…

Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 02 (2022) 107, 2022.
Inspire Record 1961177 DOI 10.17182/hepdata.105865

Inclusive and differential cross sections of single top quark production in association with a Z boson are measured in proton-proton collisions at a center-of-mass energy of 13 TeV with a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded by the CMS experiment. Events are selected based on the presence of three leptons, electrons or muons, associated with leptonic Z boson and top quark decays. The measurement yields an inclusive cross section of 87.9 $_{-7.3}^{+7.5}$ (stat) $_{-6.0}^{+7.3}$ (syst) fb for a dilepton invariant mass greater than 30 GeV, in agreement with standard model (SM) calculations and the most precise determination to date. The ratio between the cross sections for the top quark and the top antiquark production in association with a Z boson is measured as 2.37 $_{-0.42}^{+0.56}$ (stat) ${}_{-0.13}^{+0.27}$ (syst). Differential measurements at parton and particle levels are performed for the first time. Several kinematic observables are considered to study the modeling of the process. Results are compared to theoretical predictions with different assumptions on the source of the initial-state b quark and found to be in agreement, within the uncertainties. Additionally, the spin asymmetry, which is sensitive to the top quark polarization, is determined from the differential distribution of the polarization angle at parton level to be 0.54 $\pm$ 0.16 (stat) $\pm$ 0.06 (syst), in agreement with SM predictions.

73 data tables

Numerical results of inclusive cross section measurements. Each row represents a measurement: "tZq" for fully inclusive, "tZq_top" for the top quark channel, "tZq_antitop" for the top antiquark channel, "ratio" for the ratio measurement. The columns are the central value, statistical error up/down, systematic error up/down. All values are in fb, except for the ratio (dimensionless).

Numerical representation of impact plot.

Simulated signal, total background, and observed data in the signal category with exactly 1 b jet and 2-3 jets for the three data-taking years combined. For the uncertainty on the signal and background, both the total (systematic+statistical) and statistical uncertainties are provided. The uncertainty on the data is the (statistical) Poisson uncertainty. Note that this is the prefit version.

More…

Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of $\tau$ leptons in pp collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 128 (2022) 081805, 2022.
Inspire Record 1894790 DOI 10.17182/hepdata.105961

Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the $\tau$ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event if any. The analysis is performed using proton-proton data collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb$^{-1}$. These are the first differential measurements of the Higgs boson cross section in the final state of two $\tau$ leptons, and they constitute a significant improvement over measurements in other final states in events with a large jet multiplicity or with a Lorentz-boosted Higgs boson.

7 data tables

The fiducial differential signal strength and cross section in each Higgs pT bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The fiducial differential signal strength and cross section in each jet multiplicity bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The fiducial differential signal strength and cross section in each leading jet pT bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

More…

Measurement of differential $b\bar{b}$- and $c\bar{c}$-dijet cross-sections in the forward region of $pp$ collisions at $\sqrt{s}=13 ~ \mathrm{TeV}$

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
JHEP 02 (2021) 023, 2021.
Inspire Record 1823739 DOI 10.17182/hepdata.110430

The inclusive $b \bar{b}$- and $c \bar{c}$-dijet production cross-sections in the forward region of $pp$ collisions are measured using a data sample collected with the LHCb detector at a centre-of-mass energy of 13 TeV in 2016. The data sample corresponds to an integrated luminosity of 1.6 fb$^{-1}$. Differential cross-sections are measured as a function of the transverse momentum and of the pseudorapidity of the leading jet, of the rapidity difference between the jets, and of the dijet invariant mass. A fiducial region for the measurement is defined by requiring that the two jets originating from the two $b$ or $c$ quarks are emitted with transverse momentum greater than 20 GeV$/c$, pseudorapidity in the range $2.2 < \eta < 4.2$, and with a difference in the azimuthal angle between the two jets greater than 1.5. The integrated $b \bar{b}$-dijet cross-section is measured to be $53.0 \pm 9.7$ nb, and the total $c \bar{c}$-dijet cross-section is measured to be $73 \pm 16$ nb. The ratio between $c \bar{c}$- and $b \bar{b}$-dijet cross-sections is also measured and found to be $1.37 \pm 0.27$. The results are in agreement with theoretical predictions at next-to-leading order.

17 data tables

The total $b \bar{b}$-dijet and $c \bar{c}$-dijet cross-sections and their ratio in the fiducial region, compared with the NLO predictions. The first uncertainty is the combined statistical and systematic uncertainty and the second is the uncertainty from the luminosity. For the predictions, the first uncertainty corresponds to the scale uncertainty, the second to the PDF uncertainty.

Numerical results of $b \bar{b}$- and $c \bar{c}$-dijet cross-sections, $c \bar{c}$/$b \bar{b}$ dijet cross-section ratios and their total uncertainties as a function of the leading jet $\eta$ (pseudorapidity).

Numerical results of $b \bar{b}$- and $c \bar{c}$-dijet cross-sections, $c \bar{c}$/$b \bar{b}$ dijet cross-section ratios and their total uncertainties as a function of $\Delta y^*$.

More…

Measurement of the inclusive and differential Higgs boson production cross sections in the leptonic WW decay mode at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2021) 003, 2021.
Inspire Record 1805274 DOI 10.17182/hepdata.100162

Measurement of the fiducial inclusive and differential production cross sections of the Higgs boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV are performed using events where the Higgs boson decays into a pair of W bosons that subsequently decay into a final state with an electron, a muon, and a pair of neutrinos. The analysis is based on data collected with the CMS detector at the LHC during 2016-2018, corresponding to an integrated luminosity of 137 fb$^{-1}$. Production cross sections are measured as a function of the transverse momentum of the Higgs boson and the associated jet multiplicity. The Higgs boson signal is extracted and simultaneously unfolded to correct for selection efficiency and resolution effects using maximum-likelihood fits to the observed distributions in data. The integrated fiducial cross section is measured to be 86.5 $\pm$ 9.5 fb, consistent with the Standard Model expectation of 82.5 $\pm$ 4.2 fb. No significant deviation from the Standard Model expectations is observed in the differential measurements.

5 data tables

The fiducial differential signal strength and cross section in each Higgs pT bin. Both the unregularized and regularized signal strengthes are given. For the regularized case the uncertainty breakdown is given in terms of statistical (stat), experimental (exp), theoretical uncertainties on the background (bkg) and on the signal (sig), and the luminosity uncertainty (lumi). The regularization estimated bias (bias) is also given. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The correlation matrix for the ptH measurements, both for the unregularized and regularized fits. The last bin is inclusive.

The fiducial differential signal strength and cross section in each njet bin. The uncertainty breakdown is given in terms of statistical (stat), experimental (exp), theoretical uncertainties on the background (bkg) and on the signal (sig), and the luminosity uncertainty (lumi). The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

More…

Measurement of the $\eta_c(1S)$ production cross-section in $pp$ collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
Eur.Phys.J.C 80 (2020) 191, 2020.
Inspire Record 1763898 DOI 10.17182/hepdata.90457

Using a data sample corresponding to an integrated luminosity of $2.0\,fb^{-1}$, collected by the LHCb experiment, the production of the $\eta_c(1S)$ state in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13 \text{ TeV}$ is studied in the rapidity range ${2.0 < y < 4.5}$ and in the transverse momentum range ${6.5 < p_{T} < 14.0\text{ GeV}}$. The cross-section for prompt production of $\eta_c(1S)$ mesons relative to that of the $J/\psi$ meson is measured using the ${p\bar{p}}$ decay mode and is found to be ${\sigma_{\eta_c(1S)}/\sigma_{J/\psi} = 1.69 \pm 0.15 \pm 0.10 \pm 0.18}$. The quoted uncertainties are, in order, statistical, systematic and due to uncertainties on the branching fractions of the ${J/\psi\to p \bar{p}}$ and ${\eta_c\to p \bar{p}}$ decays. The prompt $\eta_c(1S)$ production cross-section is determined to be ${\sigma_{\eta_c(1S)} = 1.26 \pm 0.11\pm 0.08 \pm 0.14 \,\mu b}$, where the last uncertainty includes that on the ${J/\psi}$ meson cross-section. The ratio of the branching fractions of $b$-hadron decays to the $\eta_c(1S)$ and ${J/\psi}$ states is measured to be ${\mathcal{B}_{b\to\eta_c X}/\mathcal{B}_{b\to J/\psi X} = 0.48 \pm 0.03 \pm 0.03 \pm 0.05}$, where the last uncertainty is due to those on the branching fractions of the ${J/\psi \to p \bar{p}}$ and ${\eta_c\to p \bar{p}}$ decays. The difference between the ${J/\psi}$ and $\eta_c(1S)$ masses is also determined to be ${113.0 \pm 0.7 \pm 0.1\text{ MeV}}$, which is the most precise single measurement of this quantity to date.

4 data tables

Relative $\eta_c$ to $J/\psi$ differential production cross-sections for prompt production. The uncertainties are statistical, systematic, and due to the ${\eta_c\to p\bar{p}}$ and ${J/\psi\to p\bar{p}}$ branching fractions, respectively.

Differential production cross-sections of $\eta_c$ for prompt production. The uncertainties are statistical, systematic, and due to the $\eta_c\to p \bar{p}$ and $J/\psi\to p \bar{p}$ branching fractions and $J/\psi$ production cross-section.

Relative $\eta_c$ to $J/\psi$ differential production cross-sections for production in $b$-hadron inclusive decays. The uncertainties are statistical, systematic, and due to the ${\eta_c\to p\bar{p}}$ and ${J/\psi\to p\bar{p}}$ branching fractions, respectively.

More…

Measurement of differential cross sections and charge ratios for $t$-channel single top quark production in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 370, 2020.
Inspire Record 1744604 DOI 10.17182/hepdata.93068

A measurement is presented of differential cross sections for $t$-channel single top quark and antiquark production in proton-proton collisions at a centre-of-mass energy of 13 TeV by the CMS experiment at the LHC. From a data set corresponding to an integrated luminosity of 35.9 fb$^{-1}$, events containing one muon or electron and two or three jets are analysed. The cross section is measured as a function of the top quark transverse momentum ($p_\mathrm{T}$), rapidity, and polarisation angle, the charged lepton $p_\mathrm{T}$ and rapidity, and the $p_\mathrm{T}$ of the W boson from the top quark decay. In addition, the charge ratio is measured differentially as a function of the top quark, charged lepton, and W boson kinematic observables. The results are found to be in agreement with standard model predictions using various next-to-leading-order event generators and sets of parton distribution functions. Additionally, the spin asymmetry, sensitive to the top quark polarisation, is determined from the differential distribution of the polarisation angle at parton level to be 0.440 $\pm$ 0.070, in agreement with the standard model prediction.

69 data tables

Differential absolute cross section as a function of the parton-level top quark $p_\textrm{T}$

Covariance of the differential absolute cross section as a function of the parton-level top quark $p_\textrm{T}$

Differential absolute cross section as a function of the parton-level top quark rapidity

More…

Measurements of $\mathrm{t\overline{t}}$ differential cross sections in proton-proton collisions at $\sqrt{s} =$ 13 TeV using events containing two leptons

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2019) 149, 2019.
Inspire Record 1703993 DOI 10.17182/hepdata.89307

Measurements of differential top quark pair $\mathrm{t\overline{t}}$ cross sections using events produced in proton-proton collisions at a centre-of-mass energy of 13 TeV containing two oppositely charged leptons are presented. The data were recorded by the CMS experiment at the CERN LHC in 2016 and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The differential cross sections are presented as functions of kinematic observables of the top quarks and their decay products, the $\mathrm{t\overline{t}}$ system, and the total number of jets in the event. The differential cross sections are defined both with particle-level objects in a fiducial phase space close to that of the detector acceptance and with parton-level top quarks in the full phase space. All results are compared with standard model predictions from Monte Carlo simulations with next-to-leading-order (NLO) accuracy in quantum chromodynamics (QCD) at matrix-element level interfaced to parton-shower simulations. Where possible, parton-level results are compared to calculations with beyond-NLO precision in QCD. Significant disagreement is observed between data and all predictions for several observables. The measurements are used to constrain the top quark chromomagnetic dipole moment in an effective field theory framework at NLO in QCD and to extract $\mathrm{t\overline{t}}$ and leptonic charge asymmetries.

188 data tables

Measured absolute differential cross section at parton level as a function of $p_{T}^{t}$.

Covariance matrix of the absolute differential cross section at parton level as a function of $p_{T}^{t}$.

Measured normalised differential cross section at parton level as a function of $p_{T}^{t}$.

More…