Total and differenial cross sections of the reaction γ +n→p+ π − have been determined for photon-energies between 0.2 and 2.0 GGeV. Below 500 MeV the differential cross sections are compared with theoretical predictions derived from fixed-momentum-transfer dispersion relations.
Axis error includes +- 0.0/0.0 contribution (5 TO 8////).
Axis error includes +- 0.0/0.0 contribution (5 TO 8////).
Axis error includes +- 0.0/0.0 contribution (5 TO 8////).
Measurements on the production of intermediate momenta negative pions, negative kaons, and antiprotons by protons of 43 GeV, 52 GeV and 70 GeV on aluminium nuclei are reported.
No description provided.
No description provided.
No description provided.
The reactions pp → NN π are studied at 19 GeV/ c and analysed in terms of the amplitudes with the low mass N π system in isospin states 1 2 and 3 2 respectively. The I − 1 2 cross section is compared with the corresponding one in π p→ ππ N at 8 GeV/ c .
'1'.
Results are presented from an experiment in which high-energy deuterons, produced by proton-proton interactions at 21.1 GeV/ c incident momentum, were detected over a range of angles from 12.5 mrad to 60 mrad in the laboratory system. From the momentum spectra of the deuterons, the final states D + π + and D + ϱ + have been identified. The angular distribution for these reactions are presented and compared with previous data at lower energies.
The statistical errors are presented.
The statistical errors are presented.
The statistical errors are presented. The data are from previous publications.
Experimental results are presented on the excitation of the nucleon isobars N ∗ (1518) and N ∗ (1688) in proton-proton collisions at an incident momentum of 19.2 GeV/ c and in the range of four-momentum squared 0.6 ⩽7 z . sfnc ; t | ⩽ 5.8 GeV 2 .
Axis error includes +- 0.0/0.0 contribution (?////Due to the method used in estimating the area under the peak).
Axis error includes +- 0.0/0.0 contribution (?////Due to the method used in estimating the area under the peak).
Axis error includes +- 0.0/0.0 contribution (?////Due to the method used in estimating the area under the peak).
Results are presented on measurements of elastic proton-proton scattering at 19.2 and 21.1 GeV/ c in the angular region where previously structure had been observed at lower energies.
'1'. '2'. '3'.
A systematic survey of strange-particle final states produced by 8−BeVc protons was made in the BNL 80-in. hydrogen bubble chamber. Cross sections were measured for some 33 reactions. The ratio of the cross section for the KK¯ channels to the total strange-particle cross section was measured to be 0.12 and appears to be rising in this momentum region. The total cross section for strange-particle production is estimated as 1.8±0.2 mb. Comparison is made of the data with the predictions of the one-pion-exchange model, and at least partial agreement occurs for the K+pΛ and πKNΣ final states. The KpΣ states appear to contain N*(1924)→KΣ, and the πKNΛ states all include Y*(1385) production with the π+K0pΛ state also containing N*(1236) and K*(890) production. An examination of the five- and six-body K, Λ states indicates strong Y*(1385) and N*(1236) production. Finally, all final states containing a K and a Λ show a dependence on M(K,Λ) which is well parametrized by a Breit-Wigner shape with M0=1777 MeV and Γ=345 MeV. This behavior is interpreted as being consistent with one-pion exchange as the dominant mechanism for these reactions.
'1'. '2'.
Neutron angular distributions from the charge-exchange (π0n) and inelastic modes (π0π0n,π+π−n) of the π−−p interaction have been investigated at 313 and 371 MeV incident-pion kinetic energy. The data were obtained with an electronic counter system. Elastic and inelastic neutrons were separated in the all-neutral final states by time of flight. At both energies the charge-exchange differential cross section at the forward neutron angles differs from that determined by Caris et al. from measurements of the π0-decay gamma distributions, but generally agrees with the phase-shift-analysis calculations of Roper. The distribution of inelastic neutrons from both modes shows a strong preference for low center-of-mass neutron energies. The distribution of these neutrons does not correspond to that expected from the I=0, π−π interaction (ABC effect) suggested to account for the anomaly in p−d collisions observed by Abashian et al. Finally, all available charge-exchange differential-cross-section data from this and other experiments were combined by at least-squares fit to a Legendre expansion of the form dσdΩ*(cosθπ0*)=Σl=0NalPl(cosθπ0*) with the following results (in mb/sr):
No description provided.
No description provided.
No description provided.
Report on the investigation of interactions in π−p collisions at a pion momentum of 1.59 GeV/c, by means of the 50 cm Saclay liquid hydrogen bubble chamber, operating in a magnetic field of 17.5 kG. The results obtained concern essentially the elastic scattering and the inelastic scattering accompanied by the production of either a single pion in π−p→ pπ−π0 and nπ−π+ interactions, or by more than one pion in four-prong events. The observed angular distribution for the elastic scattering in the diffraction region, can be approximated by an exponential law. From the extrapolated value, thus obtained for the forward scattering, one gets σel= (9.65±0.30) mb. Effective mass spectra of π−π0 and π−π+ dipions are given in case of one-pion production. Each of them exhibits the corresponding ρ− or ρ0 resonances in the region of ∼ 29μ2 (μ = mass of the charged pion). The ρ peaks are particularly conspicuous for low momentum transfer (Δ2) events. The ρ0 distribution presents a secondary peak at ∼31μ2 due probably to the ω0 → π−π+ process. The branching ratio (ω0→ π+π−)/(ω0→ π+π− 0) is estimated to be ∼ 7%. The results are fairly well interpreted in the frame of the peripheral interaction according to the one-pion exchange (OPE) model, Up to values of Δ2/μ2∼10. In particular, the ratio ρ−/ρ0 is of the order of 0.5, as predicted by this model. Furthermore, the distribution of the Treiman-Yang angle is compatible with an isotropic one inside the ρ. peak. The distribution of\(\sigma _{\pi ^ + \pi ^ - } \), as calculated by the use of the Chew-Low formula assumed to be valid in the physical region of Δ2, gives a maximum which is appreciably lower than the value of\(12\pi \tilde \lambda ^2 = 120 mb\) expected for a resonant elastic ππ scattering in a J=1 state at the peak of the ρ. However, a correcting factor to the Chew-Low formula, introduced by Selleri, gives a fairly good agreement with the expected value. Another distribution, namely the Δ2 distribution, at least for Δ2 < 10 μ2, agrees quite well with the peripheral character of the interaction involving the ρ resonance. π− angular distributions in the rest frame of the ρ exhibit a different behaviour for the ρ− and for the ρ0. Whereas the first one is symmetrical, as was already reported in a previous paper, the latter shows a clear forward π− asymmetry. The main features of the four-prong results are: 1) the occurrence of the 3/2 3/2 (ρπ+) isobar in π−p → pπ+π−π− events and 2) the possible production of the ω0→ π+π−π0 resonance in π−p→ pπ−π+π−π0 events. No ρ’s were observed in four-prong events.
No description provided.
No description provided.
No description provided.