A double scattering experiment, performed at the Paul-Scherrer-Institut (PSI), has measured a large variety of spin observables for free np elastic scattering from 260 to 535 MeV in the c.m. angle ran
Relative uncertainties on the carbon polarimeter analysing power (AC).
Relative uncertainty in the beam polarisation (PB).
Measurements of DNN with statistical errors only.
The spin correlation parameters$A_{oonn}, A_{ooss}, A_{oosk}, A_{ookk}$and the analyzing power$A_{oono}$have been measured i
Values of the coefficients for the linear combinations of the spin correlation parameters Cpq measurements for the four different beam and target polarisation orientations. For the (z,z) and (y,y) configurations the coefficients are identical for all incident kinetic energies.
Measurement of the analysing power. Statistical errors only are shown. For the systematic errors see the systematics section above. Note that there are two overlapping angular settings.
Measurements of the spin correlation parameter CNN. Statistical errors onlyare shown. For the systematics see the systematic section above. Note the two overlapping angular settings.
New results of the neutron-proton spin-dependent total cross section difference$\Delta\sigma_L(np)$at the neutron beam kinetic energies 1.59, 1.79 and 2.20 GeV ar
Final results from the np data.
Values of the cross section difference at I=0 deduced by combining these npdata with pure pp (I=1) data from other experiments.
A polarized proton beam from SATURNE II, the Saclay polarized targets with$^6$Li compounds, and an unpol
The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.
The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.
The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.
A polarized proton beam extracted from SATURNE II, the Saclay polarized target with$^6$Li compounds, and
Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.
Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.
Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.
A polarized internal atomic hydrogen target and a stored, polarized beam are used to measure the spin-dependent total cross section Delta_sigma_T/sigma_tot, as well as the polar integrals of the spin correlation coefficient combination A_xx-A_yy, and the analyzing power A_y for pp-> pp pi0 at four bombarding energies between 325 and 400 MeV. This experiment is made possible by the use of a cooled beam in a storage ring. The polarization observables are used to study the contribution from individual partial waves.
SIG(C=DEL_T) defined as the cross section with the spins of the colliding protons antiparallel, minus the cross section with spins parallel, using transversely polarized beam and target.
A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to measure the rescattering observables$K_{onno}$and
No description provided.
No description provided.
No description provided.
A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to determine the spin correlation parameter Aoosk and the rescattering observablesKos″ so; Dos″ok, Nos″sn, andNonsk at 1.80 and 2.10 GeV. The beam polarization was oriented perpendicular to the beam direction in the horizontal scattering plane and the target polarization was directed either along the vertical axis or longitudinally. Left-right and up-down asymmetries in the second scattering were measured. A check for the beam optimization with the beam and target polarizations oriented vertically provided other observables, of which results forDonon andKonno at 1.80, 1.85, 2.04, and 2.10 GeV are listed here. The new data at 2.10 GeV suggest a smooth energy dependence of spin triplet scattering amplitudes at fixed angles in the vicinity of this energy.
Spin correlation parameter CSL measured with the beam polarisation measuredalong the +-S direction and the target polarisation along the +-L axis. Additional 4.3 PCT systematic normalisation uncertainty.
Measurement of the rescattering parameter KSS with the beam polarisation inthe +- S direction. Additional 6.7 PCT systematic error.
Measurement of the rescattering parameter KSS with the beam polarisation inthe +- S direction. Additional 6.7 PCT systematic error.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Surprisingly large polarizations in hyperon production by unpolarized protons have been known for a long time. The spin dynamics of the production process can be further investigated with polarized beams. Recently, a negative asymmetry AN was found in inclusive Λ0 production with a 200GeV/c transversely polarized proton beam. The depolarization DNN in p↑+p→Λ0+X has been measured with the same beam over a wide xF range and at moderate pT. DNN reaches positive values of about 30% at high xF and pT∼1.0GeV/c. This result shows a sizable spin transfer from the incident polarized proton to the outgoing Λ0.
Errors are statistical only. The systematic errors are estimated to be negligible.
Errors are statistical only. The systematic errors are estimated to be negligible.
Errors are statistical only. The systematic errors are estimated to be negligible.