First measurements of the W -> lnu and Z/gamma* -> ll (l = e, mu) production cross sections in proton-proton collisions at sqrt(s) = 7 TeV are presented using data recorded by the ATLAS experiment at the LHC. The results are based on 2250 W -> lnu and 179 Z/gamma* -> ll candidate events selected from a data set corresponding to an integrated luminosity of approximately 320 nb-1. The measured total W and Z/gamma*-boson production cross sections times the respective leptonic branching ratios for the combined electron and muon channels are $\stotW$ * BR(W -> lnu) = 9.96 +- 0.23(stat) +- 0.50(syst) +- 1.10(lumi) nb and $\stotZg$ * BR(Z/gamma* -> ll) = 0.82 +- 0.06(stat) +- 0.05(syst) +- 0.09(lumi) nb (within the invariant mass window 66 < m_ll < 116 GeV). The W/Z cross-section ratio is measured to be 11.7 +- 0.9(stat) +- 0.4(syst). In addition, measurements of the W+ and W- production cross sections and of the lepton charge asymmetry are reported. Theoretical predictions based on NNLO QCD calculations are found to agree with the measurements.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nubar final state.
Measured fiducial cross section times leptonic branching ratio for W+/- production in the combined W+ -> e+ nu and W- -> e- nubar final state.
This paper reports measurements of processes: e+e- -> gamma KsK+pi-, e+e- -> gamma K+K-pi0, e+e- -> gamma phi eta, and e+e- -> gamma phi pi0. The initial state radiated photon allows to cover the hadronic final state in the energy range from thresholds up to ~4.6 GeV. The overall size of the data sample analyzed is 232 fb-1, collected by the BaBar detector running at the PEP-II e+e- storage ring. From the Dalitz plot analysis of the KsK+pi- final state, moduli and relative phase of the isoscalar and the isovector components of the e+e- -> K K*(892) cross section are determined. Parameters of phi and rho recurrences are also measured, using a global fitting procedure which exploits the interconnection among amplitudes, moduli and phases of the e+e- -> KsK+pi-, K+K-pi0, phi eta final states. The cross section for the OZI-forbidden process e+e- -> phi pi0, and the J/psi branching fractions to KK*(892) and K+K-eta are also measured.
The cross section for E+ E- --> K0S K+ PI- + CC with statistical errors only.
The cross section for E+ E- --> K+ K- PI0 with statistical errors only.
The cross section for E+ E- --> PHI PI0 with statistical errors only.
We study the processes $e^+ e^-\to 2(\pi^+\pi^-)\pi^0\gamma$, $2(\pi^+\pi^-)\eta\gamma$, $K^+ K^-\pi^+\pi^-\pi^0\gamma$ and $K^+ K^-\pi^+\pi^-\eta\gamma$ with the hard photon radiated from the initial state. About 20000, 4300, 5500 and 375 fully reconstructed events, respectively, are selected from 232 fb$^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective $e^+ e^-$ center-of-mass energy, so that the obtained cross sections from the threshold to about 5 GeV can be compared with corresponding direct \epem measurements, currently available only for the $\eta\pi^+\pi^-$ and $\omega\pi^+\pi^-$ submodes of the $e^+ e^-\to 2(\pi^+\pi^-)\pi^0$ channel. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-\to\omega(782)\pi^+\pi^-$ and study the $\omega(1420)$ and $\omega(1650)$ resonances. In the charmonium region, we observe the $J/\psi$ in all these final states and several intermediate states, as well as the $\psi(2S)$ in some modes, and we measure the corresponding branching fractions.
Measured cross section for E+ E- --> 2(PI+ PI-) PI0 with statistical errorsonly.
Measured cross section for E+ E- --> ETA PI+ PI- with statistical errors only.
Measured cross section for E+ E- --> OMEGA PI+ PI- with statistical errors only.
We report the observation of $\e^+e^-\to \phi\eta$ near $\sqrt{s}$ = 10.58 GeV with 6.5 $\sigma$ significance in the $K^+K^-\gamma\gamma$ final state in a data sample of 224 $fb^{-1}$ collected by the BaBar experiment at the PEP-II $e^+e^-$ storage rings. We measure the restricted radiation-corrected cross section to be $\sigma(\e^+e^- \to \phi \eta) =$$2.1\pm 0.4 (\mathrm{stat})\pm 0.1(\mathrm{syst}) \mathrm{fb}$ within the range $|\cos\theta^*| < 0.8$, where $\theta^*$ is the center-of-mass polar angle of the $\phi$ meson. The $\phi$ meson is required to be in the invariant mass range of 1.008 $< m_{\phi} <$ 1.035 \gevcc. The radiation-corrected cross section in the full $\cos\theta^*$ range is extrapolated to be $2.9\pm 0.5 (\mathrm{stat})\pm 0.1(\mathrm{syst}) \mathrm{fb}$.
Radiation corrected cross section in the limited cos(theta) range and extrapolated to the full range assuming a 1+ cos(theta)**2 dependence.
We report a study of the processes e+e- -> eta gamma and e+e- -> etaprime gamma at a center-of-mass energy of 10.58 GeV, using a 232 fb^-1 data sample collected with the BABAR detector at the PEP-II collider at SLAC. We observe 20+6-5 eta gamma and 50+8-7 etaprime gamma events over small backgrounds, and measure the cross sections sigma(e+e- -> eta gamma) =4.5+1.2-1.1(stat)+-0.3(sys) fb and sigma(e+e- -> etaprime gamma)=5.4+-0.8(stat)+-0.3(sys) fb. The corresponding transition form factors at q^2 = 112 GeV^2 are q^2|F_eta(q^2)|=0.229+-0.030+-0.008 GeV, and q^2|F_etaprime(q^2)|=0.251+-0.019+-0.008 GeV, respectively.
Measured cross sections.
Undressed cross sections calculated by applying a 7.5 +- 0.2 PCT correction for vacuum polarization.
Transition form factors at Q**2 = 112 GeV**2.
The cross-sections for the production of single charged and neutral intermediate vector bosons were measured using integrated luminosities of 52 pb^{-1} and 154 pb^{-1} collected by the DELPHI experiment at centre-of-mass energies of 182.6 GeV and 188.6 GeV, respectively. The cross-sections for the reactions were determined in limited kinematic regions. The results found are in agreement with the Standard Model predictions for these channels.
Cross sections for single-W production in the (E- NUEBAR Q QBAR + CC) and (E- NUEBAR LEPTON LEPTONBAR) + CC) channels.
Cross sections for the E NU E NU channel, which includes contributions from both single-W and from single-Z0 with a large interference bewteen the two processes.
Cross sections for single-Z0 production in the hadronic channel.
We have measured the charge asymmetry in like-sign dilepton yields from B^0 B^0-bar meson decays using the CLEO detector at the Cornell Electron Storage Ring. We find a_ll = [N(l+l+) - N(l-l-)]/[N(l+l+) + N[l-l-)] = +0.013 +/- 0.050 +/- 0.005 . We combine this result with a previous, independent measurement and obtain Re(epsilon_B)/(1+|epsilon_B|^2) = +0.0035 +/- 0.0103 +/- 0.0015 (uncertainties are statistical and systematic, respectively) for the CP impurity parameter, epsilon_B.
CONST(NAME=EPSILON) is CP impurity parameter.
Measurements of the trilinear gauge boson couplings WWgamma and WWZ are presented using the data taken by DELPHI in 1998 at a centre-of-mass energy of 189 GeV and combined with DELPHI data at 183 GeV. Values are determined for Delta(g_1^Z) and Delta(kappa_gamma), the differences of the WWZ charge coupling and of the WWgamma dipole coupling from their Standard Model values, and for lambda_gamma, the WWgamma quadrupole coupling. A measurement of the magnetic dipole and electric quadrupole moment of the W is extracted from the results for Delta(kappa_gamma) and lambda_gamma. The study uses data from the final states jjlv, jjjj, lX, jjX and gammaX, where j represents a quark jet, l an identified lepton and X missing four-momentum. The observations are consistent with the predictions of the Standard Model.
No description provided.
A study of charm fragmentation into $D_s^{*+}$ and $D_s^+$ in $e^+e^-$ annihilations at $\sqrt{s}$=10.5 GeV is presented. This study using $4.72 \pm 0.05$ fb$^{-1}$ of CLEO II data reports measurements of the cross-sections $\sigma(D_s^{*+})$ and $\sigma(D_s^+)$ in momentum regions above $x=0.44$, where $x$ is the $D_s$ momentum divided by the maximum kinematically allowed $D_s$ momentum. The $D_s$ vector to vector plus pseudoscalar production ratio is measured to be $P_V(x(D_s^+)>0.44)=0.44\pm0.04$
D/S*+ cross sections in regions of X(D/S*+). BR1 = BR(D/S*+ --> D/S+ GAMMA) * BR(D/S+ --> PHI PI+) * BR(PHI --> K+ K-).
D/S+ cross sections in regions of X(D/S+). BR2 = BR(D/S+ --> PHI PI+) * BR(PHI --> K+ K-).
D/S*+ cross sections in regions of X/D/S+. In effect this is the secondary D/S+ cross section. BR2 = BR(D/S+ --> PHI PI+) * BR(PHI --> K+ K-).
Muon pair production in the process e+e- -> e+e-mu+mu- is studied using the data taken at LEP1 (sqrt(s) \simeq m_Z) with the DELPHI detector during the years 1992-1995. The corresponding integrated luminosity is 138.5 pb^{-1}. The QED predictions have been tested over the whole Q^2 range accessible at LEP1 (from several GeV^2/c^4 to several hundred GeV^2/c^4) by comparing experimental distributions with distributions resulting from Monte Carlo simulations using various generators. Selected events are used to extract the leptonic photon structure function F_2^\gamma. Azimuthal correlations are used to obtain information on additional structure functions, F_A^\gamma and F_B^\gamma, which originate from interference terms of the scattering amplitudes. The measured ratios F_A^\gamma/F_2^\gamma and F_B^\gamma/F_2^\gamma are significantly different from zero and consistent with QED predictions.
The measured QED photon structure function at Q**2 = 12.5 GeV for the combine SAT and STIC data.
The measured QED photon structure function at Q**2 = 120 GeV for the combine SAT and STIC data.
Ratio of the structure functions FA and FB to F2.