Measurement of Cross-sections and Asymmetry Parameters for the Production of Charged Pions From Various Nuclei by 585-{MeV} Protons

Crawford, J.F. ; Daum, M. ; Eaton, G.H. ; et al.
Phys.Rev.C 22 (1980) 1184-1196, 1980.
Inspire Record 143030 DOI 10.17182/hepdata.26362

We have measured the differential cross section d2σdΩdTπ and the polarization parameter P for the production of π+ and π− in various target nuclei (H1, H2, Be, C, O, Al, Ni, Cu, Mo, and Pb) by protons with a kinetic energy of 585 MeV, for production angles θπ=22.5°, 45°, 60°, 90°, and 135°, and for pion kinetic energies Tπ of 24, 35, 46, 88, 151, 192, and 254 MeV (all quantities in the laboratory system). Our data disagree strongly with recent data for 580-MeV protons. On the other hand, for pion energies up to 150 MeV, our cross sections differ little from those measured for a proton energy of 730 MeV. For nuclei with A>20, the total production cross sections σ(π+) and σ(π−) show the Z13 and N23 proportionality expected from theoretical arguments. There is evidence in our data of a shift of the π+ energy distributions compared to the π− distributions due to the effects of the Coulomb field of the nuclear protons on the emitted pions. NUCLEAR REACTIONS H1, H2, Be, C, O, Al, Ni, Cu, Mo, Pb p, π±, Tp=585 MeV; measured σ(Tπ, θπ) and asymmetry parameter P(Tπ, θπ).

3 data tables

No description provided.

No description provided.

No description provided.


Total reaction and neutron removal cross-sections of (30-60)A MeV He and Li isotopes on Pb

Warner, R. E. ; McKinnon, M. H. ; Shaner, N. C. ; et al.
Phys.Rev.C 62 (2000) 024608, 2000.
Inspire Record 530690 DOI 10.17182/hepdata.25484

Total reaction cross sections σR of (30–60)AMeV 4,6,8He and 6,7,8,9,11Li on Pb, and 2n-removal cross sections σ−2n of 6,8He and 11Li on Pb, were measured by injecting magnetically separated, focused, monoenergetic, secondary beams of those projectiles into a telescope containing Pb targets separated by thin Si detectors. All these σR’s (except 4He), and σ−2n for 6He and 11Li, are underpredicted by microscopic model calculations which include only nuclear forces. Better agreement is achieved by including electromagnetic dissociation in the model, for those projectiles for which either the electric dipole response functions or the dominant photodissociation cross sections were known. The cross sections σ−4n for 8He, σ−xn for 7,8,9Li, and (σ−3n+σ−4n) for 11Li were found to be ⩽0.7 b. All σR’s were measured to better than 5% accuracy, showing that the method is usable for other target elements sandwiched into a Si telescope.

11 data tables

No description provided.

No description provided.

No description provided.

More…

Inclusive Measurement of Diffractive Deep-Inelastic Scattering at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 72 (2012) 2074, 2012.
Inspire Record 1094384 DOI 10.17182/hepdata.60030

The diffractive process ep \rightarrow eXY, where Y denotes a proton or its low mass excitation with MY < 1.6 GeV, is studied with the H1 experiment at HERA. The analysis is restricted to the phase space region of the photon virtuality 3 \leq Q2 \leq 1600 GeV2, the square of the four-momentum transfer at the proton vertex |t| < 1.0 GeV2 and the longitudinal momentum fraction of the incident proton carried by the colourless exchange xIP < 0.05. Triple differential cross sections are measured as a function of xIP, Q2 and beta = x/xIP where x is the Bjorken scaling variable. These measurements are made after selecting diffractive events by demanding a large empty rapidity interval separating the final state hadronic systems X and Y . High statistics measurements covering the data taking periods 1999-2000 and 2004-2007 are combined with previously published results in order to provide a single set of diffractive cross sections from the H1 experiment using the large rapidity gap selection method. The combined data represent a factor between three and thirty increase in statistics with respect to the previously published results. The measurements are compared with predictions from NLO QCD calculations based on diffractive parton densities and from a dipole model. The proton vertex factorisation hypothesis is tested.

57 data tables

The reduced diffractive cross section multiplied by X_Pomeron at XP=0.0003 and Q^2=3.5 GeV^2 . The first (sys) error is the uncorrelated systematic error and the second is the correlated systematic error.

The reduced diffractive cross section multiplied by X_Pomeron at XP=0.0003 and Q^2=5.0 GeV^2 . The first (sys) error is the uncorrelated systematic error and the second is the correlated systematic error.

The reduced diffractive cross section multiplied by X_Pomeron at XP=0.0003 and Q^2=6.5 GeV^2 . The first (sys) error is the uncorrelated systematic error and the second is the correlated systematic error.

More…

Exclusive Measurement of the $pp \to nn\pi^+\pi^+$ Reaction at 1.1 GeV

The CELSIUS/WASA collaboration Skorodko, T. ; Bashkanov, M. ; Bogoslawsky, D. ; et al.
Eur.Phys.J.A 47 (2011) 108, 2011.
Inspire Record 879711 DOI 10.17182/hepdata.63827

First exclusive data for the $pp \to nn\pi^+\pi^+$ reaction have been obtained at CELSIUS with the WASA detector setup at a beam energy of $T_p$ = 1.1 GeV. Total and differential cross sections disagree with theoretical calculations, which predict the $\Delta\Delta$ excitation to be the dominant process at this beam energy. Instead the data require the excitation of a higher-lying $\Delta$ state, most likely the $\Delta(1600)$, to be the leading process.

9 data tables

Total cross section.

Distribution of the invariant mass of the PI+PI+ system.

Distribution of the cosine of the PI+_PI+ opening angle DELTA at an incident kinetic energy of 1.1 GeV.

More…

Measurement of Production Properties of Positively Charged Kaons in Proton-Carbon Interactions at 31 GeV/c

The NA61/SHINE collaboration Abgrall, N. ; Aduszkiewicz, A. ; Anticic, T. ; et al.
Phys.Rev.C 85 (2012) 035210, 2012.
Inspire Record 1079585 DOI 10.17182/hepdata.59717

Spectra of positively charged kaons in p+C interactions at 31 GeV/c were measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2007 with a graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections and charged pion spectra were already measured using the same set of data. These new measurements in combination with the published ones are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. In particular, the knowledge of kaon production is crucial for precisely predicting the intrinsic electron neutrino component and the high energy tail of the T2K beam. The results are presented as a function of laboratory momentum in 2 intervals of the laboratory polar angle covering the range from 20 up to 240 mrad. The kaon spectra are compared with predictions of several hadron production models. Using the published pion results and the new kaon data, the K+/\pi+ ratios are computed.

2 data tables

The measured K+ production cross section and the K+/PI+ cross section ratio for the angular range 20 to 140 mrad. The errors on the ratios are statistical only.

The measured K+ production cross section and the K+/PI+ cross section ratio for the angular range 140 to 240 mrad. The errors on the ratios are statistical only.


Measurement of Multijet Production in ep Collisions at High Q^2 and Determination of the Strong Coupling alpha_s

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 75 (2015) 65, 2015.
Inspire Record 1301218 DOI 10.17182/hepdata.64353

Inclusive jet, dijet and trijet differential cross sections are measured in neutral current deep-inelastic scattering for exchanged boson virtualities 150 < Q^2 < 15000 GeV^2 using the H1 detector at HERA. The data were taken in the years 2003 to 2007 and correspond to an integrated luminosity of 351 pb^{-1}. Double differential Jet cross sections are obtained using a regularised unfolding procedure. They are presented as a function of Q^2 and the transverse momentum of the jet, P_T^jet, and as a function of Q^2 and the proton's longitudinal momentum fraction, Xi, carried by the parton participating in the hard interaction. In addition normalised double differential jet cross sections are measured as the ratio of the jet cross sections to the inclusive neutral current cross sections in the respective Q^2 bins of the jet measurements. Compared to earlier work, the measurements benefit from an improved reconstruction and calibration of the hadronic final state. The cross sections are compared to perturbative QCD calculations in next-to-leading order and are used to determine the running coupling and the value of the strong coupling constant as alpha_s(M_Z) = 0.1165 (8)_exp (38)_{pdf,theo}.

20 data tables

Double-differential inclusive jet cross sections measured as a function of Q**2 and PT(JET) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.5% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

Double-differential dijet cross sections measured as a function of Q**2 and MEAN(PT(2JET)) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

Double-differential dijet cross sections measured as a function of Q**2 and XI(2) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

More…

Cross sections for the reactions $e^+ e^-\to K_S^0 K_L^0$, $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ from events with initial-state radiation

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 092002, 2014.
Inspire Record 1287920 DOI 10.17182/hepdata.64506

We study the processes $e^+ e^-\to K_S^0 K_L^0 \gamma$, $K_S^0 K_L^0 \pi^+\pi^-\gamma$, $K_S^0 K_S^0 \pi^+\pi^-\gamma$, and $K_S^0 K_S^0 K^+K^-\gamma$, where the photon is radiated from the initial state, providing cross section measurements for the hadronic states over a continuum of center-of-mass energies. The results are based on 469 fb$^{-1}$ of data collected with the BaBar detector at SLAC. We observe the $\phi(1020)$ resonance in the $K_S^0 K_L^0$ final state and measure the product of its electronic width and branching fraction with about 3% uncertainty. We present a measurement of the $e^+ e^-\to K_S^0 K_L^0 $ cross section in the energy range from 1.06 to 2.2 GeV and observe the production of a resonance at 1.67 GeV. We present the first measurements of the $e^+ e^-\to K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ cross sections, and study the intermediate resonance structures. We obtain the first observations of \jpsi decay to the $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ final states.

22 data tables

Cross section measurement for PHI(1020).

Mass measurement for PHI(1020).

Measurement of the PHI(1020) width.

More…

Double tag events in two photon collisions at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 531 (2002) 39-51, 2002.
Inspire Record 565440 DOI 10.17182/hepdata.49820

Double-tag events in two-photon collisions are studied using the L3 detector at LEP centre-of-mass energies from root(s)=189 GeV to 209 GeV. The cross sections of the e+e- -> e+e- hadrons and gamma*gamma* -> hadrons processes are measured as a function of the photon virtualities, Q1^2 and Q2^2, of the two-photon mass, W_gammagamma, and of the variable Y=ln(W_gammagamma^2/(Q1 Q2)), for an average photon virtuality &lt;Q2> = 16 GeV2. The results are in agreement with next-to-leading order calculations for the process gamma*gamma* -> q qbar in the interval 2 &lt;= Y &lt;= 5. An excess is observed in the interval 5 &lt; Y &lt;= 7, corresponding to W_gammagamma greater than 40 GeV . This may be interpreted as a sign of resolved photon QCD processes or the onset of BFKL phenomena.

6 data tables

Differential cross section as a function of the photon virtualities Qi**2. Here Q1 is the virtuality w.r.t the electron vertex, and Q2 w.r.t the positron vertex. Data are given both before and after radiative corrections.

Differential cross section as a function of W, the invariant mas of the virtual GAMMA*GAMMA* system. Data are given both before and after radiative corrections.

Differential cross section as a function of the variable LN(W**2/Q1*Q2). Data are given both before and after radiative corrections.

More…

Study of the Charge Exchange Reactions $\pi^- p \to (\pi^0$, $\eta$, $\eta^\prime$) $n$ at 63-{GeV}

The ACCMOR collaboration Daum, C. ; Hertzberger, L. ; Hoogland, W. ; et al.
Z.Phys.C 8 (1981) 95, 1981.
Inspire Record 156266 DOI 10.17182/hepdata.49658

None

4 data tables

INCLUDING SYSTEMATIC ERRORS.

STATISTICAL ERRORS ONLY.

STATISTICAL ERRORS ONLY.

More…

Total cross-section in gamma gamma collisions at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 519 (2001) 33-45, 2001.
Inspire Record 552997 DOI 10.17182/hepdata.49853

The reaction e+e- -> e+e- gamma* gamma* -> e+e- hadrons for quasi-real photons is studied using data from root(s) = 183 GeV up to 202 GeV. Results on the total cross sections sigma(e+e- -> e+e- hadrons) and sigma(+e- gamma* gamma* -> e+e- hadrons) are given for the two-photon centre-of-mass energies 5 GeV &lt; Wgammagamma &lt; 185 GeV. The total cross section of two real photons is described by a Regge parametrisation. We observe a steeper rise with the two-photon centre-of-mass energy as compared to the hadron-hadron and the photon-proton cross sections. The data are also compared to the expectations of different theoretical models.

2 data tables

The measured total cross section for E+ E- --> E+ E- HADRONS. The first DSYS error is the total experimental systematic uncertainty and the second DSYS error is the uncertainty introduced by unfolding the data with PYTHIA and PHOJET corrections seperately.

The total cross section for two photon production of hadrons. The final column gives the data averaged over all energies together with the experimental systematic error (first DSYS) and the difference between the average and the data unfolded with PHOJET (lower sign) and PYTHIA (upper sign) seperately (second DSYS).