Date

Precise determination of the B0s-B0sbar oscillation frequency

The LHCb collaboration Aaij, R. ; Beteta, C. Abellán ; Ackernley, T. ; et al.
Nature Phys. 18 (2022) 1-5, 2022.
Inspire Record 1857623 DOI 10.17182/hepdata.105881

Mesons comprising a beauty quark and a strange quark can oscillate between particle (B0s) and antiparticle (B0s) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, deltams. Here we present ameasurement of deltams using B0s2DsPi decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be deltams = 17.7683 +- 0.0051 +- 0.0032 ps-1, where the first uncertainty is statistical and the second systematic. This measurement improves upon the current deltams precision by a factor of two. We combine this result with previous LHCb measurements to determine deltams = 17.7656 +- 0.0057 ps-1, which is the legacy measurement of the original LHCb detector.

1 data table match query

Summary of LHCb measurements. Comparison of LHCb $\Delta m_s$ measurements from Refs. [8–11], the result presented in this article and their average. For the average, following systematic uncertainties are assumed to be fully correlated(:) zScale, MomentumScale, VeloAlignment and DecayTimeBias. The measurements are statistically uncorrelated.


Study of high-momentum Higgs boson production in association with a vector boson in the $qqbb$ final state with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.Lett. 132 (2024) 131802, 2024.
Inspire Record 2736741 DOI 10.17182/hepdata.149510

This Letter presents the first study of Higgs boson production in association with a vector boson (V = W or Z) in the fully hadronic $qqbb$ final state using data recorded by the ATLAS detector at the LHC in proton-proton collisions at $\sqrt{s}=13$ TeV and corresponding to an integrated luminosity of 137 fb$^{-1}$. The vector bosons and Higgs bosons are each reconstructed as large-radius jets and tagged using jet substructure techniques. Dedicated tagging algorithms exploiting $b$-tagging properties are used to identify jets consistent with Higgs bosons decaying into $b\bar{b}$. Dominant backgrounds from multijet production are determined directly from the data, and a likelihood fit to the jet mass distribution of Higgs boson candidates is used to extract the number of signal events. The VH production cross section is measured inclusively and differentially in several ranges of Higgs boson transverse momentum: 250-450, 450-650, and greater than 650 GeV. The inclusive signal yield relative to the standard model expectation is observed to be $\mu = 1.4 ^{+1.0}_{-0.9}$ and the corresponding cross section is $3.1 \pm 1.3\, (stat.)\: ^{+1.8}_{-1.4}\, (syst.$) pb.

3 data tables match query

Higgs candidate jet mass distributions in the signal region for $p_{T,J}^H$ in [250,450) GeV obtained after the inclusive fit with a single Z+jets normalization factor and a single signal strength.

Higgs candidate jet mass distributions in the signal region for $p_{T,J}^H$ in [450,650) GeV obtained after the inclusive fit with a single Z+jets normalization factor and a single signal strength.

Higgs candidate jet mass distributions in the signal region for $p_{T,J}^H \geq 650$ GeV obtained after the inclusive fit with a single Z+jets normalization factor and a single signal strength.


Measurement of $W^{\pm}Z$ production cross sections and gauge boson polarisation in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 535, 2019.
Inspire Record 1720438 DOI 10.17182/hepdata.83701

This paper presents measurements of $W^{\pm}Z$ production cross sections in $pp$ collisions at a centre-of-mass energy of 13 TeV. The data were collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 36.1 fb$^{-1}$. The $W^{\pm}Z$ candidate events are reconstructed using leptonic decay modes of the gauge bosons into electrons and muons. The measured inclusive cross section in the detector fiducial region for a single leptonic decay mode is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu \ell \ell}^{\textrm{fid.}} = 63.7 \pm 1.0$ (stat.) $\pm 2.3$ (syst.) $\pm 1.4$ (lumi.) fb, reproduced by the next-to-next-to-leading-order Standard Model prediction of $61.5^{+1.4}_{-1.3}$ fb. Cross sections for $W^+Z$ and $W^-Z$ production and their ratio are presented as well as differential cross sections for several kinematic observables. An analysis of angular distributions of leptons from decays of $W$ and $Z$ bosons is performed for the first time in pair-produced events in hadronic collisions, and integrated helicity fractions in the detector fiducial region are measured for the $W$ and $Z$ bosons separately. Of particular interest, the longitudinal helicity fraction of pair-produced vector bosons is also measured.

24 data tables match query

The measured $W^{\pm}Z$ fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the modelling uncertainty, the third is luminosity uncertainty.

The measured $W^{+}Z$ fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the modelling uncertainty, the third is luminosity uncertainty.

The measured $W^{-}Z$ fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the modelling uncertainty, the third is luminosity uncertainty.

More…

The Production of Beauty Particles in $\pi^-$ U Interactions at 320-{GeV} Energy

The WA78 collaboration Catanesi, M.G. ; Muciaccia, M.T. ; Natali, S. ; et al.
Phys.Lett.B 187 (1987) 431-436, 1987.
Inspire Record 235069 DOI 10.17182/hepdata.6522

B B production in π − -uranium interactions has been observed at 320 GeV beam energy looking at events with three muons in the final state. The cross section is found to be σ B B = 4.5±1.4±1.4 nb per nucleon (for a linear A -dependence) or σ B B = 17.6±5.5±5.5 nb per nucleon (assuming A 0.75 dependence). An estimate of x F distribution is given.

1 data table match query

BEAUTY INCLUSIVE SPECTRA WAS ASSUMED TO BE E*D(SIG)/D(X)/D(PT**2) = EXP(-0.9*PT**2)*(1-ABS(X))**A. THE BEST FIT FOR A IS A = 2.5.


Dielectron yields in p + d and p + p collisions at 4.9-GeV

Huang, H.Z. ; Beedoe, S. ; Bougteb, M. ; et al.
Phys.Lett.B 297 (1992) 233-237, 1992.
Inspire Record 338830 DOI 10.17182/hepdata.28996

The dielectron yield in p + d and p + p collisions at a beam kinetic energy of 4.9 GeV has been measured using the Dilepton Spectrometer (DLS) at the Bevalac. The measured ratio of the yield in p + d to that in p + p collisions, 1.92±0.06, is in disagreement with the assumptions of model calculations applied to our ealier p +Be data, where it was found that p + n bremsstrahlung dominated other sources. While the measured ratio is consistent with a hadron-like origin of the dielectrons, the contributions of known hadronic decays are smaller than the measured yield from p + p collissions.

1 data table match query

Background subtracted data uncorrected for acceptance.


Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4$\ell$ decay channel at $\sqrt{s}$ = 13 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 942, 2020.
Inspire Record 1790439 DOI 10.17182/hepdata.94312

Inclusive and differential fiducial cross sections of the Higgs boson are measured in the $H \to ZZ^{*} \to 4\ell$ ($\ell = e,\mu$) decay channel. The results are based on proton$-$proton collision data produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector from 2015 to 2018, equivalent to an integrated luminosity of 139 fb$^{-1}$. The inclusive fiducial cross section for the $H \to ZZ^{*} \to 4\ell$ process is measured to be $\sigma_\mathrm{fid} = 3.28 \pm 0.32$ fb, in agreement with the Standard Model prediction of $\sigma_\mathrm{fid, SM} = 3.41 \pm 0.18 $ fb. Differential fiducial cross sections are measured for a variety of observables which are sensitive to the production and decay of the Higgs boson. All measurements are in agreement with the Standard Model predictions. The results are used to constrain anomalous Higgs boson interactions with Standard Model particles.

76 data tables match query

Fractional uncertainties for the inclusive fiducial and total cross sections, and range of systematic uncertainties for the differential measurements. The columns e/$\mu$ and jets represent the experimental uncertainties in lepton and jet reconstruction and identification, respectively. The Z + jets, $t\bar{t}$, tXX (Other Bkg.) column includes uncertainties related to the estimation of these background sources. The $ZZ^{*}$ theory ($ZZ^{*}$ th.) uncertainties include the PDF and scale variations. Signal theory (Sig th.) uncertainties include PDF choice, QCD scale, and shower modelling of the signal. Finally, the column labelled Comp. contains uncertainties related to production mode composition and unfolding bias which affect the response matrices. The uncertainties have been rounded to the nearest 0.5%, except for the luminosity uncertainty which has been measured to be 1.7%.

Expected (pre-fit) and observed number of events in the four decay final states after the event selection, in the mass range 115< $m_{4l}$ < 130 GeV. The sum of the expected number of SM Higgs boson events and the estimated background yields is compared to the data. Combined statistical and systematic uncertainties are included for the predictions.

The fiducial and total cross sections of Higgs boson production measured in the 4l final state. The fiducial cross sections are given separately for each decay final state, and for same- and different-flavour decays. The inclusive fiducial cross section is measured as the sum of all final states ($\sigma_{sum}$), as well as by combining the per-final state measurements assuming SM $ZZ^{*} \to 4l$ relative branching ratios ($\sigma_{comb}$). For the total cross section ($\sigma_{tot}$), the Higgs boson branching ratio at $m_{H}$= 125 GeV is assumed. The total SM prediction is accurate to N3LO in QCD and NLO EW for the ggF process. The cross sections for all other Higgs boson production modes XH are added. For the fiducial cross section predictions, the SM cross sections are multiplied by the acceptances determined using the NNLOPS sample for ggF. The p-values indicating the compatibility of the measurement and the SM prediction are shown as well. They do not include the systematic uncertainty in the theoretical predictions.

More…

Observation of phi phi production in the reaction anti-p p --> 4 K+- at 1.4-GeV/c incident anti-p momentum

The JETSET collaboration Bertolotto, L. ; Buzzo, A. ; Debevec, P.T. ; et al.
Phys.Lett.B 345 (1995) 325-334, 1995.
Inspire Record 382894 DOI 10.17182/hepdata.48237

The JETSET (PS202) experiment at CERN-LEAR searches for hadronic resonances by means of in-flight antiproton-proton annihilations in the reaction p p → φφ . In order to obtain sufficient luminosity and good final-state mass resolution, this experiment uses an internal hydrogen-cluster jet target intersecting the LEAR antiproton beam. We report on the study of the reaction p p → 4K ± at 1.4 GeV / c incident p̄ momentum, and we present the first experimental observation of a stro φφ signal in this reaction.

2 data tables match query

No description provided.

No description provided.


The sigma- p and sigma- d total cross-sections at 19 gev

Badier, J. ; Bland, R. ; Romana, A. ; et al.
Phys.Lett.B 41 (1972) 387-392, 1972.
Inspire Record 75613 DOI 10.17182/hepdata.28220

The total cross sections of 18.7 GeV Σ − hyperons on protons and deutrons have been measured to be 34.0 ± 1.1 mb and 61.3 + 1.4 mb, respectively. The derived Σ − -neutron cross section is 30.0 ± 1.2 mb.

1 data table match query

CROSS SECTIONS CORRECTED FOR FORWARD COULOMB AND NUCLEAR SCATTERING.


High p_T Direct Photon and pi^0 Triggered Azimuthal Jet Correlations in sqrt(s)=200 GeV p+p Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 82 (2010) 072001, 2010.
Inspire Record 857187 DOI 10.17182/hepdata.95866

Correlations of charged hadrons of 1 < pT < 10 GeV/c with high pT direct photons and pi^ 0 mesons in the range 5 <pT < 15 GeV/c are used to study jet fragmentation in the photon+jet and di-jet channels, respectively. The magnitude of the partonic transverse momentum, kT, is obtained by comparing to a model incorporating a Gaussian kT smearing. The sensitivity of the associated charged hadron spectra to the underlying fragmentation function is tested and the data are compared to calculations using recent global fit results. The shape of the direct photon-associated hadron spectrum as well as its charge asymmetry are found to be consistent with a sample dominated by quark-gluon Compton scattering. No significant evidence of fragmentation photon correlated production is observed within experimental uncertainties.

10 data tables match query

Away-side charged hadron yield per π 0 trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1 & Away-side isolated direct photon trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1.

Away-side charged hadron yield per π 0 trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1 & Away-side isolated direct photon trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1.

Away-side charged hadron yield per π 0 trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1 & Away-side isolated direct photon trigger as a function of xE, which is equivalent to zT in the collinear limit cos(∆φ) = 1.

More…

Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV with ALICE at LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 68 (2010) 89-108, 2010.
Inspire Record 852450 DOI 10.17182/hepdata.54742

Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range |$\eta$| < 1.4. In the central region (|$\eta$| < 0.5), at 0.9 TeV, we measure charged-particle pseudorapidity density dNch/deta = 3.02 $\pm$ 0.01 (stat.) $^{+0.08}_{-0.05}$ (syst.) for inelastic interactions, and dNch/deta = 3.58 $\pm$ 0.01 (stat.) $^{+0.12}_{-0.12}$ (syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dNch/deta = 3.77 $\pm$ 0.01 (stat.) $^{+0.25}_{-0.12}$ (syst.) for inelastic, and dNch/deta = 4.43 $\pm$ 0.01 (stat.) $^{+0.17}_{-0.12}$ (syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% $\pm$ 0.5% (stat.) $^{+5.7}_{-2.8}$% (syst.) for inelastic and 23.7% $\pm$ 0.5% (stat.) $^{+4.6}_{-1.1}$% (syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions.

23 data tables match query

Measured pseudorapidity dependence of DN/DETARAP for INEL collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of DN/DETARAP for NSD collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of DN/DETARAP for INEL collisions at a centre-of-mass energy of 2360 GeV.

More…