A measurement is presented of differential cross sections for $t$-channel single top quark and antiquark production in proton-proton collisions at a centre-of-mass energy of 13 TeV by the CMS experiment at the LHC. From a data set corresponding to an integrated luminosity of 35.9 fb$^{-1}$, events containing one muon or electron and two or three jets are analysed. The cross section is measured as a function of the top quark transverse momentum ($p_\mathrm{T}$), rapidity, and polarisation angle, the charged lepton $p_\mathrm{T}$ and rapidity, and the $p_\mathrm{T}$ of the W boson from the top quark decay. In addition, the charge ratio is measured differentially as a function of the top quark, charged lepton, and W boson kinematic observables. The results are found to be in agreement with standard model predictions using various next-to-leading-order event generators and sets of parton distribution functions. Additionally, the spin asymmetry, sensitive to the top quark polarisation, is determined from the differential distribution of the polarisation angle at parton level to be 0.440 $\pm$ 0.070, in agreement with the standard model prediction.
Differential absolute cross section as a function of the parton-level top quark $p_\textrm{T}$
Covariance of the differential absolute cross section as a function of the parton-level top quark $p_\textrm{T}$
Differential absolute cross section as a function of the parton-level top quark rapidity
An analysis of the decay $\Lambda_b \to J/\psi(\to\mu^+\mu^-)\Lambda(\to p \pi^-)$ decay is performed to measure the $\Lambda_b$ polarization and three angular parameters in data from pp collisions at $\sqrt{s} =$ 7 and 8 TeV, collected by the CMS experiment at the LHC. The $\Lambda_b$ polarization is measured to be 0.00 $\pm$ 0.06 (stat) $\pm$ 0.06 (syst) and the parity-violating asymmetry parameter is determined to be 0.14 $\pm$ 0.14 (stat) $\pm$ 0.10 (syst). The measurements are compared to various theoretical predictions, including those from perturbative quantum chromodynamics.
The measured values of the angular parameters and the $\Lambda_b$ polarization.
The values of the helicity amplitudes in the decay.
Correlation matrix for the fitted parameters.
The extreme temperatures and energy densities generated by ultra-relativistic collisions between heavy nuclei produce a state of matter with surprising fluid properties. Non-central collisions have angular momentum on the order of 1000$\hbar$, and the resulting fluid may have a strong vortical structure that must be understood to properly describe the fluid. It is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have so far been found. Here we present the first measurement of an alignment between the angular momentum of a non-central collision and the spin of emitted particles, revealing that the fluid produced in heavy ion collisions is by far the most vortical system ever observed. We find that $\Lambda$ and $\overline{\Lambda}$ hyperons show a positive polarization of the order of a few percent, consistent with some hydrodynamic predictions. A previous measurement that reported a null result at higher collision energies is seen to be consistent with the trend of our new observations, though with larger statistical uncertainties. These data provide the first experimental access to the vortical structure of the "perfect fluid" created in a heavy ion collision. They should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the Strong Force. Our results extend the recent discovery of hydrodynamic spin alignment to the subatomic realm.
Lambda and AntiLambda polarization as a function of collision energy. A 0.8% error on the alpha value used in the paper is corrected in this table. Systematic error bars include those associated with particle identification (negligible), uncertainty in the value of the hyperon decay parameter (2%) and reaction plane resolution (2%) and detector efficiency corrections (4%). The dominant systematic error comes from statistical fluctuations of the estimated combinatoric background under the (anti-)$\Lambda$ mass peak.
Lambda and AntiLambda polarization as a function of collision energy calculated using the new $\alpha_\Lambda=0.732$ updated on PDG2020. Systematic error bars include those associated with particle identification (negligible), uncertainty in the value of the hyperon decay parameter (2%) and reaction plane resolution (2%) and detector efficiency corrections (4%). The dominant systematic error comes from statistical fluctuations of the estimated combinatoric background under the (anti-)$\Lambda$ mass peak.
The angular distributions and the differential branching fraction of the decay B0 to K*0(892) mu mu are studied using data corresponding to an integrated luminosity of 20.5 inverse femtobarns collected with the CMS detector at the LHC in pp collisions at sqrt(s) = 8 TeV. From 1430 signal decays, the forward-backward asymmetry of the muons, the K*0(892) longitudinal polarization fraction, and the differential branching fraction are determined as a function of the dimuon invariant mass squared. The measurements are among the most precise to date and are in good agreement with standard model predictions.
The measured values of signal yield, FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared. The (FL,AFB) correlation factors are also shown.
The measured values of FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared, combining the 7 TeV and 8 TeV results.
Measurements of the five most significant angular coefficients, A[0] through A[4], for Z bosons produced in pp collisions at $\sqrt{s}$ = 8 TeV and decaying to $\mu^+ \mu^-$ are presented as a function of the transverse momentum and rapidity of Z boson. The integrated luminosity of the dataset collected with the CMS detector at the LHC corresponds to 19.7 inverse femtobarns. These measurements provide comprehensive information about Z boson production mechanisms, and are compared to QCD predictions at leading order, next-to-leading order, and next-to-next-to-leading order in perturbation theory.
The five angular coefficients A0 to A4 and A0-A2 in bins of qT for |y| < 1.
The five angular coefficients A0 to A4 and A0-A2 in bins of qT for 1 < |y| < 2.1.
The transverse polarization of $\Lambda$ and $\bar\Lambda$ hyperons produced in proton-proton collisions at a center-of-mass energy of 7 TeV is measured. The analysis uses 760 $\mu$b$^{-1}$ of minimum bias data collected by the ATLAS detector at the LHC in the year 2010. The measured transverse polarization averaged over Feynman $x_{\rm F}$ from $5\times 10^{-5}$ to 0.01 and transverse momentum $p_{\rm T}$ from 0.8 to 15 GeV is $-0.010 \pm 0.005({\rm stat}) \pm 0.004({\rm syst})$ for $\Lambda$ and $0.002 \pm 0.006({\rm stat}) \pm 0.004({\rm syst})$ for $\bar\Lambda$. It is also measured as a function of $x_{\rm F}$ and $p_{\rm T}$, but no significant dependence on these variables is observed. Prior to this measurement, the polarization was measured at fixed-target experiments with center-of-mass energies up to about 40 GeV. The ATLAS results are compatible with the extrapolation of a fit from previous measurements to the $x_{\rm F}$ range covered by this mesurement.
Transverse polarization POL of LAMBDA and LAMBDABAR hyperons averaged over PT and XF.
Transverse polarization POL of LAMBDA and LAMBDABAR hyperons as a function of XF.
Transverse polarization POL of LAMBDA and LAMBDABAR hyperons as a function of PT.
The polarizations of prompt J/psi and psi(2S) mesons are measured in proton-proton collisions at sqrt(s) = 7 TeV, using a dimuon data sample collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.9 inverse femtobarns. The prompt J/psi and psi(2S) polarization parameters lambda[theta], lambda[phi], and lambda[theta,phi], as well as the frame-invariant quantity lambda(tilde), are measured from the dimuon decay angular distributions in three different polarization frames. The J/psi results are obtained in the transverse momentum range 14 < pt < 70 GeV, in the rapidity intervals abs(y) < 0.6 and 0.6 < abs(y) < 1.2. The corresponding psi(2S) results cover 14 < pt < 50 GeV and include a third rapidity bin, 1.2 < abs(y) < 1.5. No evidence of large transverse or longitudinal polarizations is seen in these kinematic regions, which extend much beyond those previously explored.
Lambda-Theta in the CS frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.
Lambda-Theta in the CS frame for the J/psi as a function of pT for 0.6 < |y| < 1.2.
Lambda-Phi in the CS frame for the J/psi as a function of pT for 0.0 < |y| < 0.6.
The polarizations of the Y(1S), Y(2S), and Y(3S) mesons are measured in proton-proton collisions at sqrt(s) = 7 TeV, using a data sample of Y(nS) to oppositely charged muon pair decays collected by the CMS experiment, corresponding to an integrated luminosity of 4.9 inverse femtobarns. The dimuon decay angular distributions are analyzed in three different polarization frames. The polarization parameters lambda[theta], lambda[phi], and lambda[theta,phi], as well as the frame-invariant quantity lambda-tilde, are presented as a function of the Y(nS) transverse momentum between 10 and 50 GeV, in the rapidity ranges abs(y) < 0.6 and 0.6 < abs(y) < 1.2. No evidence of large transverse or longitudinal polarizations has been seen in the explored kinematic region.
Distribution of Lambda-Theta in the CS frame for Y(1S) production in the |y| range 0.0-0.6.
Distribution of Lambda-Theta in the CS frame for Y(1S) production in the |y| range 0.6-1.2.
Distribution of Lambda-Phi in the CS frame for Y(1S) production in the |y| range 0.0-0.6.
We have measured the polarizations of J/ψ and ψ(2S) mesons as functions of their transverse momentum pT when they are produced promptly in the rapidity range |y|<0.6 with pT≥5 GeV/c. The analysis is performed using a data sample with an integrated luminosity of about 800 pb−1 collected by the CDF II detector. For both vector mesons, we find that the polarizations become increasingly longitudinal as pT increases from 5 to 30 GeV/c. These results are compared to the predictions of nonrelativistic quantum chromodynamics and other contemporary models. The effective polarizations of J/ψ and ψ(2S) mesons from B-hadron decays are also reported.
Polarization parameter ALPHA for J/PSI production.
Polarization parameter ALPHA for PSI(2S) production.
Elements of the spin density matrix for W bosons in e+e- -> W+W- -> qqln events are measured from data recorded by the OPAL detector at LEP. This information is used calculate polarised differential cross-sections and to search for CP-violating effects. Results are presented for W bosons produced in e+e- collisions with centre-of-mass energies between 183 GeV and 209 GeV. The average fraction of W bosons that are longitudinally polarised is found to be (23.9 +- 2.1 +- 1.1)% compared to a Standard Model prediction of (23.9 +- 0.1)%. All results are consistent with CP conservation.
The fraction of longitudinal polarization for leptonically and hadronically decaying W bosons. The average values for all the centre of mass energies and for both lepton and hadron decay combined are also given.
The luminosity weighted average over all the centre of mass energies of the diagonal elements of the RHO++ and RHO-- SDM as a function of the cosine of the angle of the W- boson for the leptonic decay channel.
The luminosity weighted average over all the centre of mass energies of the diagonal element of the RHO00 SDM as a function of the cosine of the angle of the W- boson for both leptonic and hadronic decay channels, and combined.