Date

Measurement of the ratio of the B$_\mathrm{c}^+$$\to$ J/$ψ$$τ^+ν_τ$ and B$_\mathrm{c}^+$$\to$ J/$ψ$$μ^+ν_μ$ branching fractions using three-prong $τ$ lepton decays

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-BPH-23-001, 2025.
Inspire Record 3072961 DOI 10.17182/hepdata.166008

The ratio between the B$_\mathrm{c}^+$$\to$ J/$ψ$$τ^+ν_τ$ and B$_\mathrm{c}^+$$\to$ J/$ψ$$μ^+ν_μ$ branching fractions is measured using a data sample of proton-proton collisions collected by CMS at a center-of-mass energy of 13 TeV in the years 2016$-$2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. The J$/ψ$ meson is identified through its J$/ψ$$\to$$μ^+μ^-$ decay and the tau lepton is reconstructed in the hadronic three-prong final state. The measured ratio of branching fractions in this tau decay mode, $\mathcal{R}^\text{had}_{\mathrm{J}/ψ}$ = 1.04$_{-0.44}^{+0.50}$, is combined with the previous analysis based on the $τ^+$$\to$$μ^+ν_μ\barν_τ$ leptonic decay channel, leading to $\mathcal{R}_{\mathrm{J}/ψ}$ = 0.49 $\pm$ 0.26. As this result is consistent with the standard model prediction of 0.258 $\pm$ 0.004, no evidence of lepton flavor universality violation is found.

1 data table

First exclusive reconstruction of the B$^{*+}$, B$^{*0}$, and B$^{*0}_\text{s}$ mesons and precise measurement of their masses

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-BPH-24-011, 2025.
Inspire Record 2958462 DOI 10.17182/hepdata.159543

Using proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016$-$2018, corresponding to an integrated luminosity of 140 fb$^{-1}$, the first full reconstruction of the three vector B meson states, B$^{*+}$, B$^{*0}$, and B$^{*0}_\text{s}$, is performed. The mass differences between the excited mesons and their corresponding ground states are measured to be $m(\text{B}^{*+})-m(\text{B}^+)$ = 45.277 $\pm$ 0.039 $\pm$ 0.027 MeV, $m(\text{B}^{*0})- m(\text{B}^0)$ = 45.471 $\pm$ 0.056 $\pm$ 0.028 MeV, and $m(\text{B}^{*0}_\text{s})-m(\text{B}_\text{s})$ = 49.407 $\pm$ 0.132 $\pm$ 0.041 MeV, where the first uncertainties are statistical and the second are systematic. These results improve on the precision of previous measurements by an order of magnitude.

5 data tables

The measured mass differences between vector and ground B meson states.

Extracted masses of $\mathrm{B}^{*+}$, $\mathrm{B}^{*0}$, and $\mathrm{B}^{*0}_{\mathrm{s}}$ mesons. The values are obtained using the measurements in Table 1 and the ground state masses from PDG 2024 (S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)), which are the source of the last uncertainties.

Extracted mass differences between vector B meson states of different flavour. The values are obtained using the measurements in Table 4 and the ground state mass differences from PDG 2024 (S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)), which are the source of the last uncertainties.

More…

Observation of the charged-particle multiplicity dependence of $\sigma_{\psi(2S)}/\sigma_{\text{J}/\psi}$ in pPb collisions at 8.16 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
Phys.Rev.Lett. 135 (2025) 092301, 2025.
Inspire Record 2896594 DOI 10.17182/hepdata.154161

Bound states of charm and anticharm quarks, known as charmonia, have a rich spectroscopic structure that can be used to probe the dynamics of hadron production in high-energy hadron collisions. Here, the cross section ratio of excited ($ψ$(2S)) and ground state (J/$ψ$) vector mesons is measured as a function of the charged-particle multiplicity in proton-lead (pPb) collisions at a center-of-mass (CM) energy per nucleon pair of 8.16 TeV. The data corresponding to an integrated luminosity of 175 nb$^{-1}$ were collected using the CMS detector. The ratio is measured separately for prompt and nonprompt charmonia in the transverse momentum range 6.5 $\lt$$p_\text{T}$$\lt$ 30 GeV and in four rapidity ranges spanning $-$2.865 $\lt$$y_\text{CM}$$\lt$ 1.935. For the first time, a statistically significant multiplicity dependence of the prompt cross section ratio is observed in proton-nucleus collisions. There is no clear rapidity dependence in the ratio. The prompt measurements are compared with a theoretical model which includes interactions with nearby particles during the evolution of the system. These results provide additional constraints on hadronization models of heavy quarks in nuclear collisions.

7 data tables

Normalized $\sigma_{\psi(2S)}/\sigma_{J/\psi}$ in $6.5<p_T<30.0\,GeV$ and $ -2.865 < y_{CM} < -2$ as functions of normalized $\text{N}^{{\text{corr.}}}_{\text{track}}$

Normalized $\sigma_{\psi(2S)}/\sigma_{J/\psi}$ in $6.5<p_T<30.0\,GeV$ and $ -2 < y_{CM} < -1$ as functions of normalized $\text{N}^{{\text{corr.}}}_{\text{track}}$

Normalized $\sigma_{\psi(2S)}/\sigma_{J/\psi}$ in $6.5<p_T<30.0\,GeV$ and $ -1 < y_{CM} < 1$ as functions of normalized $\text{N}^{{\text{corr.}}}_{\text{track}}$

More…

Model-independent search for pair production of new bosons decaying into muons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2024) 172, 2024.
Inspire Record 2812281 DOI 10.17182/hepdata.150033

The results of a model-independent search for the pair production of new bosons within a mass range of 0.21 $\lt m\lt$ 60 GeV, are presented. This study utilizes events with a four-muon final state. We use two data sets, comprising 41.5 fb$^{-1}$ and 59.7 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV, recorded in 2017 and 2018 by the CMS experiment at the CERN LHC. The study of the 2018 data set includes a search for displaced signatures of a new boson within the proper decay length range of $0 \lt c\tau \lt$ 100 $\mu$m. Our results are combined with a previous CMS result, based on 35.9 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV collected in 2016. No significant deviation from the expected background is observed. Results are presented in terms of a model-independent upper limit on the product of cross section, branching fraction, and acceptance. The findings are interpreted across various benchmark models, such as an axion-like particle model, a vector portal model, the next-to-minimal supersymmetric standard model, and a dark supersymmetric scenario, including those predicting a non-negligible proper decay length of the new boson. In all considered scenarios, substantial portions of the parameter space are excluded, expanding upon prior results.

11 data tables

The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the 2017 analysis. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search

The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the 2018 analysis. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search

The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the combined 2017 and 2018 analyses. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search

More…

Measurement of $J/\psi$ production cross-sections in $pp$ collisions at $\sqrt{s}=5$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Beteta, C. Abellán ; et al.
JHEP 11 (2021) 181, 2021.
Inspire Record 1915030 DOI 10.17182/hepdata.115512

The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0<p_{\text{T}}<20~\text{GeV}/c$ and $2.0<y<4.5$ are $8.154\pm0.010\pm0.283~\mu\text{b}$ for prompt $J/\psi$ mesons and $0.820\pm0.003\pm0.034~\mu\text{b}$ for nonprompt $J/\psi$ mesons, where the first uncertainties are statistical and the second systematic. These cross-sections are compared with those at $\sqrt{s}=8$ TeV and $13$ TeV, and are used to update the measurement of the nuclear modification factor in proton-lead collisions for $J/\psi$ mesons at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}}=5$ TeV. The results are compared with theoretical predictions.

20 data tables

Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.

More…

Measurement of the $B^{\pm}$ production cross-section in pp collisions at $\sqrt{s} =$ 7 and 13 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 12 (2017) 026, 2017.
Inspire Record 1630633 DOI 10.17182/hepdata.149528

The production of $B^{\pm}$ mesons is studied in $pp$ collisions at centre-of-mass energies of 7 and 13 TeV, using $B^{\pm}\rightarrow J/\psi K^{\pm}$ decays and data samples corresponding to 1.0 fb$^{-1}$ and 0.3 fb$^{-1}$, respectively. The production cross-sections summed over both charges and integrated over the transverse momentum range $0<p_{\text{T}}< 40$ GeV/$c$ and the rapidity range $2.0<y<4.5$ are measured to be $\sigma(pp \rightarrow B^{\pm} X, \sqrt{s} = \text{7 TeV}) = 43.0 \pm 0.2 \pm 2.5 \pm 1.7\mu b,$ $\sigma(pp \rightarrow B^{\pm} X, \sqrt{s} = \text{13 TeV}) = 86.6 \pm 0.5 \pm 5.4 \pm 3.4\mu b,$ where the first uncertainties are statistical, the second are systematic, and the third are due to the limited knowledge of the $B^{\pm}\rightarrow J/\psi K^{\pm}$ branching fraction. The ratio of the cross-section at 13 TeV to that at 7 TeV is determined to be $2.02\pm0.02\text{(stat)}\pm0.12\text{(syst)}$. Differential cross-sections are also reported as functions of $p_{\text{T}}$ and $y$. All results are in agreement with theoretical calculations based on the state-of-art fixed next-to-leading order quantum chromodynamics.

4 data tables

Measured B$^\pm$ double-differential cross-section (in units of nb) at 7 TeV, as a function of $p_T$ and $y$.

Measured B$^\pm$ double-differential cross-section (in units of nb) at 13 TeV, as a function of $p_T$ and $y$.

Measured B$^\pm$ differential cross-sections (in units of nb) at 7 TeV and 13 TeV as functions of $p_T$ in the range $2.0<y<4.5$. The cross-section ratio between 13 TeV and 7TeV is also presented.

More…

Test of lepton universality with $B^{0} \rightarrow K^{*0}\ell^{+}\ell^{-}$ decays

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
JHEP 08 (2017) 055, 2017.
Inspire Record 1599846 DOI 10.17182/hepdata.77815

A test of lepton universality, performed by measuring the ratio of the branching fractions of the $B^{0} \rightarrow K^{*0}\mu^{+}\mu^{-}$ and $B^{0} \rightarrow K^{*0}e^{+}e^{-}$ decays, $R_{K^{*0}}$, is presented. The $K^{*0}$ meson is reconstructed in the final state $K^{+}\pi^{-}$, which is required to have an invariant mass within 100$\mathrm{\,MeV}c^2$ of the known $K^{*}(892)^{0}$ mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of about 3$\mathrm{\,fb}^{-1}$, collected by the LHCb experiment at centre-of-mass energies of 7 and 8$\mathrm{\,TeV}$. The ratio is measured in two regions of the dilepton invariant mass squared, $q^{2}$, to be \begin{eqnarray*} R_{K^{*0}} = \begin{cases} 0.66~^{+~0.11}_{-~0.07}\mathrm{\,(stat)} \pm 0.03\mathrm{\,(syst)} & \textrm{for } 0.045 < q^{2} < 1.1~\mathrm{\,GeV^2}c^4 \, , \\ 0.69~^{+~0.11}_{-~0.07}\mathrm{\,(stat)} \pm 0.05\mathrm{\,(syst)} & \textrm{for } 1.1\phantom{00} < q^{2} < 6.0~\mathrm{\,GeV^2}c^4 \, . \end{cases} \end{eqnarray*} The corresponding 95.4\% confidence level intervals are $[0.52, 0.89]$ and $[0.53, 0.94]$. The results, which represent the most precise measurements of $R_{K^{*0}}$ to date, are compatible with the Standard Model expectations at the level of 2.1--2.3 and 2.4--2.5 standard deviations in the two $q^{2}$ regions, respectively.

2 data tables

Distributions of the $R(K^{*0})$ delta log-likelihood, $-(\ln L - \ln L_{best})$, for the three trigger categories combined in the low-q2 bin ($0.045 < q^2 < 1.1$ GeV$^{2}/c^4$).

Distributions of the $R(K^{*0})$ delta log-likelihood, $-(\ln L - \ln L_{best})$, for the three trigger categories combined in the central-q2 bin ($1.1 < q^2 < 6.0$ GeV$^{2}/c^4$).


Version 2
Measurements of prompt charm production cross-sections in $pp$ collisions at $\sqrt{s} = 5\,$TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 06 (2017) 147, 2017.
Inspire Record 1490663 DOI 10.17182/hepdata.74708

Production cross-sections of prompt charm mesons are measured using data from $pp$ collisions at the LHC at a centre-of-mass energy of $5\,$TeV. The data sample corresponds to an integrated luminosity of $8.60\pm0.33\,$pb$^{-1}$ collected by the LHCb experiment. The production cross-sections of $D^0$, $D^+$, $D_s^+$, and $D^{*+}$ mesons are measured in bins of charm meson transverse momentum, $p_{\text{T}}$, and rapidity, $y$. They cover the rapidity range $2.0<y<4.5$ and transverse momentum ranges $0 < p_{\text{T}} < 10\, \text{GeV}/c$ for $D^0$ and $D^+$ and $1 < p_{\text{T}} < 10\, \text{GeV}/c$ for $D_s^+$ and $D^{*+}$ mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of $1 < p_{\text{T}} < 8\, \text{GeV}/c$ are determined to be \sigma(pp\rightarrow D^0 X) = 1004 \pm 3 \pm 54\,\mu\text{b} \sigma(pp\rightarrow D^+ X) = 402 \pm 2 \pm 30\,\mu\text{b} \sigma(pp\rightarrow D_s^+ X) = 170 \pm 4 \pm 16\,\mu\text{b} \sigma(pp\rightarrow D^{*+} X)= 421 \pm 5 \pm 36\,\mu\text{b} where the uncertainties are statistical and systematic, respectively.

14 data tables

Differential production cross-sections for prompt $D^{0} + \bar{D}^{0}$ mesons in bins of $(p_{\mathrm{T}}, y)$. The first uncertainty is statistical, and the second is the total systematic.

Differential production cross-sections for prompt $D^{+} + D^{-}$ mesons in bins of $(p_{\mathrm{T}}, y)$. The first uncertainty is statistical, and the second is the total systematic.

Differential production cross-sections for prompt $D_{s}^{+} + D_{s}^{-}$ mesons in bins of $(p_{\mathrm{T}}, y)$. The first uncertainty is statistical, and the second is the total systematic.

More…

Measurements of the S-wave fraction in $B^{0}\rightarrow K^{+}\pi^{-}\mu^{+}\mu^{-}$ decays and the $B^{0}\rightarrow K^{\ast}(892)^{0}\mu^{+}\mu^{-}$ differential branching fraction

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 11 (2016) 047, 2016.
Inspire Record 1469448 DOI 10.17182/hepdata.82576

A measurement of the differential branching fraction of the decay ${B^{0}\rightarrow K^{\ast}(892)^{0}\mu^{+}\mu^{-}}$ is presented together with a determination of the S-wave fraction of the $K^+\pi^-$ system in the decay $B^{0}\rightarrow K^{+}\pi^{-}\mu^{+}\mu^{-}$. The analysis is based on $pp$-collision data corresponding to an integrated luminosity of 3\,fb$^{-1}$ collected with the LHCb experiment. The measurements are made in bins of the invariant mass squared of the dimuon system, $q^2$. Precise theoretical predictions for the differential branching fraction of $B^{0}\rightarrow K^{\ast}(892)^{0}\mu^{+}\mu^{-}$ decays are available for the $q^2$ region $1.1<q^2<6.0\,{\rm GeV}^2/c^4$. In this $q^2$ region, for the $K^+\pi^-$ invariant mass range $796 < m_{K\pi} < 996\,{\rm MeV}/c^2$, the S-wave fraction of the $K^+\pi^-$ system in $B^{0}\rightarrow K^{+}\pi^{-}\mu^{+}\mu^{-}$ decays is found to be \begin{equation*} F_{\rm S} = 0.101\pm0.017({\rm stat})\pm0.009 ({\rm syst}), \end{equation*} and the differential branching fraction of $B^{0}\rightarrow K^{\ast}(892)^{0}\mu^{+}\mu^{-}$ decays is determined to be \begin{equation*} {\rm d}\mathcal{B}/{\rm d} q^2 = (0.342_{\,-0.017}^{\,+0.017}({\rm stat})\pm{0.009}({\rm syst})\pm0.023({\rm norm}))\times 10^{-7}c^{4}/{\rm GeV}^{2}. \end{equation*} The differential branching fraction measurements presented are the most precise to date and are found to be in agreement with Standard Model predictions.

2 data tables

S-wave fraction ($F_{\rm S}$) in bins of $q^2$ for two $m_{K\pi}$ regions. The first uncertainty is statistical and the second systematic.

Differential branching fraction of $B^0 \to K^*(892)^0 \mu^+ \mu^-$ decays in bins of $q^2$. The first uncertainty is statistical, the second systematic and the third due to the uncertainty on the $B^0 \to J/\psi K^{*0}$ and $J/\psi \to \mu^+ \mu^-$ branching fractions.


Measurement of the differential cross-sections of prompt and non-prompt production of $J/\psi$ and $\psi(2\mathrm{S})$ in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 283, 2016.
Inspire Record 1409298 DOI 10.17182/hepdata.72721

The production rates of prompt and non-prompt $J/\psi$ and $\psi(2\mathrm{S})$ mesons are measured using 2.1 $fb^{-1}$ and 11.4 $fb^{-1}$ of data collected with the ATLAS experiment at the LHC, in proton-proton collisions at $\sqrt{s}=7$ and 8 TeV respectively. Production cross-sections for both prompt and non-prompt production sources, ratios of $\psi(2\mathrm{S})$ to $J/\psi$ production, and fractions of non-prompt to inclusive production for $J/\psi$ and $\psi(2\mathrm{S})$ are measured double-differentially as a function of meson $p_{T}$ and rapidity. These measurements are made in a restricted fiducial volume and also corrected for geometrical acceptance after which they are compared to a variety of theoretical predictions.

40 data tables

Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 7 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 8 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of non-prompt $J/\psi$ decaying to a muon pair for 7 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.

More…