Date

Search for low-mass resonances decaying into two jets and produced in association with a photon or a jet at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 110 (2024) 032002, 2024.
Inspire Record 2768375 DOI 10.17182/hepdata.145799

A search is performed for localized excesses in the low-mass dijet invariant mass distribution, targeting a hypothetical new particle decaying into two jets and produced in association with either a high transverse momentum photon or a jet. The search uses the full Run 2 data sample from LHC proton-proton collisions collected by the ATLAS experiment at a center-of-mass energy of 13 TeV during 2015-2018. Two variants of the search are presented for each type of initial-state radiation: one that makes no jet flavor requirements and one that requires both of the jets to have been identified as containing $b$-hadrons. No excess is observed relative to the Standard Model prediction, and the data are used to set upper limits on the production cross-section for a benchmark $Z'$ model and, separately, for generic, beyond the Standard Model scenarios which might produce a Gaussian-shaped contribution to dijet invariant mass distributions. The results extend the current constraints on dijet resonances to the mass range between 200 and 650 GeV.

12 data tables

Dijet invariant mass distributions data compared to the fitted background estimates for the $\gamma j j$ channel. The distributions are shown here with the $m_{jj}$ resolution binning.

Dijet invariant mass distributions data compared to the fitted background estimates for the $\gamma b b$ channel. The distributions are shown here with the $m_{jj}$ resolution binning.

Dijet invariant mass distributions data compared to the fitted background estimates for the $j j j$ channel. The distributions are shown here with the $m_{jj}$ resolution binning.

More…

Search for charged-lepton-flavour violating $\mu\tau qt$ interactions in top-quark production and decay in $pp$ collisions at $\sqrt{s}= 13$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 110 (2024) 012014, 2024.
Inspire Record 2767173 DOI 10.17182/hepdata.151734

A search for charged-lepton-flavour violating $\mu\tau qt$ ($q=u,c$) interactions is presented, considering both top-quark production and decay. The data analysed correspond to 140 $\textrm{fb}^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}= $13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The analysis targets events containing two muons with the same electric charge, a hadronically decaying $\tau$-lepton and at least one jet, with exactly one $b$-tagged jet, produced by a $\mu\tau qt$ interaction. Agreement with the Standard Model expectation within $1.6\sigma$ is observed, and limits are set at the 95% CL on the charged-lepton-flavour violation branching ratio of $\mathcal{B}(t \to \mu\tau q) < 8.7 \times 10^{-7}$. An Effective Field Theory interpretation is performed yielding 95% CL limits on Wilson coefficients, dependent on the flavour of the associated light quark and the Lorentz structure of the coupling. These range from $|c_{\mathsf{lequ}}^{3(2313)}| / \Lambda^{2} < 0.10\textrm{ TeV}^{-2}$ for $\mu\tau ut$ to $|c_{\mathsf{ lequ}}^{1(2323)}| / \Lambda^{2} < 1.8\textrm{ TeV}^{-2}$ for $\mu\tau ct$. An additional interpretation is performed for scalar leptoquark production inducing charged lepton flavour violation, with fixed inter-generational couplings. Upper limits on leptoquark coupling strengths are set at the 95% CL, ranging from $\lambda^{\textrm{LQ}} = $1.3 to $\lambda^{\textrm{LQ}} = $3.7 for leptoquark masses between 0.5 and 2.0 TeV.

18 data tables

Observed event yields in $\textrm{CR}t\bar{t}\mu$ compared with pre-fit expectations from Monte Carlo simulations, as a function of the scalar sum of lepton and jet transverse momenta, $H_{\mathrm{T}}$. The last bin includes overflow events. `Signal (prod.)' and `Signal (dec.)' refer to the single-top-quark production and top-quark pair decay signal contributions, respectively. The pre-fit signal yield represents all Wilson coefficients set to 0.1 simultaneously for a new physics scale of $\Lambda=1$ TeV.

Observed event yields in $\textrm{CR}t\bar{t}\mu$ compared with post-fit expectations from Monte Carlo simulations, as a function of the scalar sum of lepton and jet transverse momenta, $H_{\mathrm{T}}$. The last bin includes overflow events. `Signal (prod.)' and `Signal (dec.)' refer to the single-top-quark production and top-quark pair decay signal contributions, respectively.

Observed event yields in $\textrm{SR}$ compared with pre-fit expectations from Monte Carlo simulations, as a function of the scalar sum of lepton and jet transverse momenta, $H_{\mathrm{T}}$. The last bin includes overflow events. `Signal (prod.)' and `Signal (dec.)' refer to the single-top-quark production and top-quark pair decay signal contributions, respectively. The pre-fit signal yield represents all Wilson coefficients set to 0.1 simultaneously for a new physics scale of $\Lambda=1$ TeV.

More…

Precise test of lepton flavour universality in $W$-boson decays into muons and electrons in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Eur.Phys.J.C 84 (2024) 993, 2024.
Inspire Record 2764810 DOI 10.17182/hepdata.153467

The ratio of branching ratios of the $W$ boson to muons and electrons, $R^{\mu/e}_W=B(W\rightarrow \mu\nu)/B(W\rightarrow e\nu)$, has been measured using 140 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector at the LHC, probing the universality of lepton couplings. The ratio is obtained from measurements of the $t\bar{t}$ production cross-section in the $ee$, $e\mu$ and $\mu\mu$ dilepton final states. To reduce systematic uncertainties, it is normalised by the square root of the corresponding ratio $R^{\mu\mu/ee}_Z$ for the $Z$ boson measured in inclusive $Z\rightarrow ee$ and $Z\rightarrow\mu\mu$ events. By using the precise value of $R^{\mu\mu/ee}_Z$ determined from $e^+e^-$ colliders, the ratio $R^{\mu/e}_W$ is determined to be $R^{\mu/e}_W = 0.9995 \pm 0.0022 \pm 0.0036 \pm 0.0014$. The three uncertainties correspond to data statistics, experimental systematics and the external measurement of $R^{\mu\mu/ee}_Z$, giving a total uncertainty of 0.0045, and confirming the Standard Model assumption of lepton flavour universality in $W$-boson decays at the 0.5% level.

1 data table

The measurement of the ratio of the rate of decay of W bosons to muons and electrons, $R(\mu/e)=B(W\rightarrow\mu\nu)/B(W\rightarrow e\nu)$.


Studies of the energy dependence of diboson polarization fractions and the Radiation Amplitude Zero effect in WZ production with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 133 (2024) 101802, 2024.
Inspire Record 2762099 DOI 10.17182/hepdata.149992

This Letter presents the first study of the energy-dependence of diboson polarization fractions in $WZ \rightarrow \ell\nu \ell'\ell'~(\ell, \ell'=e, \mu)$ production. The data set used corresponds to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector. Two fiducial regions with an enhanced presence of events featuring two longitudinally-polarized bosons are defined. A non-zero fraction of events with two longitudinally-polarized bosons is measured with an observed significance of 5.2 standard deviations in the region with $100<p_T^Z\leq200$ GeV and 1.6 standard deviations in the region with $p_T^Z>200$ GeV, where $p_T^Z$ is the transverse momentum of the $Z$ boson. This Letter also reports the first study of the Radiation Amplitude Zero effect. Events with two transversely-polarized bosons are analyzed for the $\Delta Y(\ell_W Z)$ and $\Delta Y(WZ)$ distributions defined respectively as the rapidity difference between the lepton from the $W$ boson decay and the $Z$ boson and the rapidity difference between the $W$ boson and the $Z$ boson. Significant suppression of events near zero is observed in both distributions. Unfolded $\Delta Y(\ell_W Z)$ and $\Delta Y(WZ)$ distributions are also measured and compared to theoretical predictions.

45 data tables

Polarization fractions in the region with $100<p_T^Z\leq200$ GeV using three unconstrained parameters.

Polarization fractions in the region with $p_T^Z>200$ GeV using three unconstrained parameters.

Fraction of events where both bosons are longitudinally polarized in the region with $100<p_T^Z\leq200$ GeV using two unconstrained parameters.

More…

Combination of measurements of the top quark mass from data collected by the ATLAS and CMS experiments at $\sqrt{s}=7$ and 8 TeV

The ATLAS & CMS collaborations Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 261902, 2024.
Inspire Record 2789110 DOI 10.17182/hepdata.143309

A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The data sets used correspond to an integrated luminosity of up to 5 and 20$^{-1}$ of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak $t$-channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is $m_\mathrm{t}$ = 172.52 $\pm$ 0.14 (stat) $\pm$ 0.30 (syst) GeV, with a total uncertainty of 0.33 GeV.

1 data table

Uncertainties on the $m_{t}$ values extracted in the LHC, ATLAS, and CMS combinations arising from the categories described in the text, sorted in order of decreasing value of the combined LHC uncertainty.


A statistical combination of ATLAS Run 2 searches for charginos and neutralinos at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.Lett. 133 (2024) 031802, 2024.
Inspire Record 2758009 DOI 10.17182/hepdata.149530

Statistical combinations of searches for charginos and neutralinos using various decay channels are performed using $139\,$fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13\,$TeV with the ATLAS detector at the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino chargino-neutralino production, or higgsino production decaying via Standard Model $W$, $Z$, or $h$ bosons are combined to extend the mass reach to the produced SUSY particles by 30-100 GeV. The depth of the sensitivity of the original searches is also improved by the combinations, lowering the 95% CL cross-section upper limits by 15%-40%.

38 data tables

Expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.

$+1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.

$-1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.

More…

New constraints on ultraheavy dark matter from the LZ experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Al Musalhi, A.K. ; et al.
Phys.Rev.D 109 (2024) 112010, 2024.
Inspire Record 2758452 DOI 10.17182/hepdata.151392

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/$c^2$ to a few TeV/$c^2$. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of $0.9$ tonne$\times$year, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10$^{17}$ GeV/$c^2$.

5 data tables

Upper limit on the WIMP-nucleon scattering cross section from the multiple-scatter analysis.

Upper limit on the WIMP-nucleus scattering cross section from the multiple-scatter analysis.

Upper limit on the WIMP-nucleon scattering cross section from the single-scatter analysis.

More…

Determination of the relative sign of the Higgs boson couplings to $W$ and $Z$ bosons using $WH$ production via vector-boson fusion with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.Lett. 133 (2024) 141801, 2024.
Inspire Record 2753923 DOI 10.17182/hepdata.145856

The associated production of Higgs and $W$ bosons via vector-boson fusion (VBF) is highly sensitive to the relative sign of the Higgs boson couplings to $W$ and $Z$ bosons. In this Letter, two searches for this process are presented, using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC. The first search targets scenarios with opposite-sign couplings of the $W$ and $Z$ bosons to the Higgs boson, while the second targets Standard Model-like scenarios with same-sign couplings. Both analyses consider Higgs decays into a pair of $b$-quarks and $W$ decays with an electron or muon. The opposite-sign coupling hypothesis is excluded with significance much greater than $5\sigma$, and the observed (expected) upper limit set on the cross-section for VBF $WH$ production is 9.0 (8.7) times the Standard Model value.

5 data tables

Data compared to the background prediction in each region of the negative $\lambda_{WZ}$ analysis, before the fit to data. The signal prediction with $\kappa_{W} = +1$, $\kappa_{Z} = -1$ is shown overlaid. The predicted signal yield with $\kappa_{W} = +1$, $\kappa_{Z} = +1$ in SR$^{-}$ is 2.93 events, which is not shown in the figure. The shaded bands represent the total pre-fit uncertainty on the prediction. The uncertainty does not include the normalization of the main backgrounds, which is unconstrained in the fit.

Data compared to the background prediction in each region of the negative $\lambda_{WZ}$ analysis, after the fit to data. The fitted signal strength is $\hat{\mu} = -0.027$, corresponding to $-8$ events. This contribution is not shown in the figure. The predicted signal yield with $\kappa_{W} = +1$, $\kappa_{Z} = +1$ in SR$^{-}$ is 2.93 events, which is also not shown in the figure. The shaded bands represent the total post-fit uncertainty on the prediction.

Data compared to the SM prediction in each region of the positive \lam{} analysis, before the fit to data. The shaded bands represent the total pre-fit uncertainty on the prediction. The uncertainty does not include the normalization of the main backgrounds, which is unconstrained in the fit.

More…

Search for pair production of higgsinos in events with two Higgs bosons and missing transverse momentum in $\sqrt{s}=13$ TeV $pp$ collisions at the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.D 109 (2024) 112011, 2024.
Inspire Record 2751932 DOI 10.17182/hepdata.136030

This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and missing transverse momentum. Two complementary analysis channels are used, with each channel specifically targeting either low or high values of the higgsino mass. The low-mass (high-mass) channel exploits 126 (139) fb$^{-1}$ of $\sqrt{s}=13$ TeV data collected by the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess above the Standard Model prediction is found. At 95% confidence level, masses between 130 GeV and 940 GeV are excluded for higgsinos decaying exclusively into Higgs bosons and gravitinos. Exclusion limits as a function of the higgsino decay branching ratio to a Higgs boson are also reported.

66 data tables

Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.

Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.

Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.

More…

Version 2
Search for nearly mass-degenerate higgsinos using low-momentum mildly-displaced tracks in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 132 (2024) 221801, 2024.
Inspire Record 2751400 DOI 10.17182/hepdata.146944

Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass splitting is $\mathcal{O}(1 \text{GeV})$. This Letter presents a novel search for nearly mass-degenerate Higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass splittings between the lightest charged and neutral Higgsinos from $0.3$ GeV to $0.9$ GeV is excluded at 95$\%$ confidence level, with a maximum reach of approximately $170$ GeV in the Higgsino mass.

62 data tables

Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.

Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.

More…