Version 2
Measurement of jet fragmentation in Pb+Pb and $pp$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.C 98 (2018) 024908, 2018.
Inspire Record 1673177 DOI 10.17182/hepdata.91197

This paper presents a measurement of jet fragmentation functions in 0.49 nb$^{-1}$ of Pb+Pb collisions and 25 pb$^{-1}$ of $pp$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV collected in 2015 with the ATLAS detector at the LHC. These measurements provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultra-relativistic collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the measurements in Pb+Pb collisions by baseline measurements in $pp$ collisions. This ratio is studied as a function of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems, the jet fragmentation functions are measured for jets with transverse momentum between 126 GeV and 398 GeV and with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is observed.

182 data tables

The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 0.3.

The D(z) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 2.1.

The D(pT) distributions in different centrality intervals in PbPb and in pp for 126.00 < pTjet < 158.49 and 0.0 < eta < 0.3.

More…

Prompt and non-prompt $J/\psi$ and $\psi(2\mathrm{S})$ suppression at high transverse momentum in 5.02 TeV Pb+Pb collisions with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 762, 2018.
Inspire Record 1672469 DOI 10.17182/hepdata.103082

A measurement of $J/\psi$ and $\psi(2\mathrm{S})$ production is presented. It is based on a data sample from Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV and $pp$ collisions at $\sqrt{s}$ = 5.02 TeV recorded by the ATLAS detector at the LHC in 2015, corresponding to an integrated luminosity of $0.42\mathrm{nb}^{-1}$ and $25\mathrm{pb}^{-1}$ in Pb+Pb and $pp$, respectively. The measurements of per-event yields, nuclear modification factors, and non-prompt fractions are performed in the dimuon decay channel for $9 < p_{T}^{\mu\mu} < 40$ GeV in dimuon transverse momentum, and $-2.0 < y_{\mu\mu} < 2.0$ in rapidity. Strong suppression is found in Pb+Pb collisions for both prompt and non-prompt $J/\psi$, as well as for prompt and non-prompt $\psi(2\mathrm{S})$, increasing with event centrality. The suppression of prompt $\psi(2\mathrm{S})$ is observed to be stronger than that of $J/\psi$, while the suppression of non-prompt $\psi(2\mathrm{S})$ is equal to that of the non-prompt $J/\psi$ within uncertainties, consistent with the expectation that both arise from \textit{b}-quarks propagating through the medium. Despite prompt and non-prompt $J/\psi$ arising from different mechanisms, the dependence of their nuclear modification factors on centrality is found to be quite similar.

17 data tables

Per-event-yield of prompt jpsi production in 5.02 TeV PbPb collision data as a function of pT for three different centrality slices in the rapidity range |y| < 2.

Per-event-yield of non-prompt jpsi production in 5.02 TeV PbPb collision data as a function of pT for three different centrality slices in the rapidity range |y| < 2.

Non-prompt fraction of jpsi production in 5.02 TeV PbPb collision data as a function of pT for three different centrality slices in the rapidity range |y| < 2.

More…

Beam-energy and centrality dependence of direct-photon emission from ultra-relativistic heavy-ion collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 123 (2019) 022301, 2019.
Inspire Record 1672476 DOI 10.17182/hepdata.110699

The PHENIX collaboration presents first measurements of low-momentum ($0.4<p_T<3$ GeV/$c$) direct-photon yields from Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=39 and 62.4 GeV. For both beam energies the direct-photon yields are substantially enhanced with respect to expectations from prompt processes, similar to the yields observed in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200. Analyzing the photon yield as a function of the experimental observable $dN_{\rm ch}/d\eta$ reveals that the low-momentum ($>$1\,GeV/$c$) direct-photon yield $dN_{\gamma}^{\rm dir}/d\eta$ is a smooth function of $dN_{\rm ch}/d\eta$ and can be well described as proportional to $(dN_{\rm ch}/d\eta)^\alpha$ with $\alpha{\sim}$1.25. This new scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and Large Hadron Collider, for centrality selected samples, as well as for different, $A$$+$$A$ collision systems. At a given beam energy the scaling also holds for high $p_T$ ($>5$\,GeV/$c$) but when results from different collision energies are compared, an additional $\sqrt{s_{_{NN}}}$-dependent multiplicative factor is needed to describe the integrated-direct-photon yield.

21 data tables

Direct photon spectra(Physical Review C87, 054907 (2013)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 200 GeV.

Direct photon spectra(Physics Letters B94, 106 (1980)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 62.4 GeV.

Direct photon spectra(Nucl. Part. Phys. 23, A1 (1997) and Sov. J. Nucl. Phys. 51, 836 (1990)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 63 GeV.

More…

Measurement of quarkonium production in proton--lead and proton--proton collisions at $5.02$ $\mathrm{TeV}$ with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 171, 2018.
Inspire Record 1622737 DOI 10.17182/hepdata.82624

The modification of the production of $J/\psi$, $\psi(\mathrm{2S})$, and $\mit{\Upsilon}(n\mathrm{S})$ ($n = 1, 2, 3$) in $p$+Pb collisions with respect to their production in $pp$ collisions has been studied. The $p$+Pb and $pp$ datasets used in this paper correspond to integrated luminosities of $28$ $\mathrm{nb}^{-1}$ and $25$ $\mathrm{pb}^{-1}$ respectively, collected in 2013 and 2015 by the ATLAS detector at the LHC, both at a centre-of-mass energy per nucleon pair of 5.02 TeV. The quarkonium states are reconstructed in the dimuon decay channel. The yields of $J/\psi$ and $\psi(\mathrm{2S})$ are separated into prompt and non-prompt sources. The measured quarkonium differential cross sections are presented as a function of rapidity and transverse momentum, as is the nuclear modification factor, $R_{p\mathrm{Pb}}$ for $J/\psi$ and $\mit{\Upsilon}(\mathrm{1S})$. No significant modification of the $J/\psi$ production is observed while $\mit{\Upsilon}(\mathrm{1S})$ production is found to be suppressed at low transverse momentum in $p$+Pb collisions relative to $pp$ collisions. The production of excited charmonium and bottomonium states is found to be suppressed relative to that of the ground states in central $p$+Pb collisions.

25 data tables

Summary of results for cross-section of non-prompt J/psi decaying to a muon pair in pp collisions at 5.02 TeV in nb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of non-prompt psi(2S) decaying to a muon pair in pp collisions at 5.02 TeV in nb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of prompt J/psi decaying to a muon pair in pp collisions at 5.02 TeV in nb/GeV. Uncertainties are statistical and systematic, respectively.

More…

Measurement of multi-particle azimuthal correlations with the subevent cumulant method in $pp$ and $p$+Pb collisions with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.C 97 (2018) 024904, 2018.
Inspire Record 1615757 DOI 10.17182/hepdata.82287

A detailed study of multi-particle azimuthal correlations is presented using $pp$ data at $\sqrt{s}=5.02$ and 13 TeV, and $p$+Pb data at $\sqrt{s_{\rm{NN}}}=5.02$ TeV, recorded with the ATLAS detector at the LHC. The azimuthal correlations are probed using four-particle cumulants $c_{n}\{4\}$ and flow coefficients $v_n\{4\}=(-c_{n}\{4\})^{1/4}$ for $n=2$ and 3, with the goal of extracting long-range multi-particle azimuthal correlation signals and suppressing the short-range correlations. The values of $c_{n}\{4\}$ are obtained as a function of the average number of charged particles per event, $\left\langle N_{\rm{ch}} \right\rangle$, using the recently proposed two-subevent and three-subevent cumulant methods, and compared with results obtained with the standard cumulant method. The three-subevent method is found to be least sensitive to short-range correlations, which originate mostly from jets with a positive contribution to $c_{n}\{4\}$. The three-subevent method gives a negative $c_{2}\{4\}$, and therefore a well-defined $v_2\{4\}$, nearly independent of $\left\langle N_{\rm{ch}} \right\rangle$, which provides direct evidence that the long-range multi-particle azimuthal correlations persist to events with low multiplicity. Furthermore, $v_2\{4\}$ is found to be smaller than the $v_2\{2\}$ measured using the two-particle correlation method, as expected for long-range collective behavior. Finally, the measured values of $v_2\{4\}$ and $v_2\{2\}$ are used to estimate the number of sources relevant for the initial eccentricity in the collision geometry.

72 data tables

The c_2{4} values calculated for charged particles with 0.3 < pT < 3 GeV with the standard cumulant method from the 13 TeV pp data. The event averaging is performed for N_{ch}^{Sel} calculated for 0.3 < pT < 3 GeV.

The c_2{4} values calculated for charged particles with 0.3 < pT < 3 GeV with the standard cumulant method from the 13 TeV pp data. The event averaging is performed for N_{ch}^{Sel} calculated for pT > 0.2 GeV.

The c_2{4} values calculated for charged particles with 0.3 < pT < 3 GeV with the standard cumulant method from the 13 TeV pp data. The event averaging is performed for N_{ch}^{Sel} calculated for pT > 0.4 GeV.

More…

Measurement of multi-particle azimuthal correlations in $pp$, $p$+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 428, 2017.
Inspire Record 1599077 DOI 10.17182/hepdata.77996

Multi-particle cumulants and corresponding Fourier harmonics are measured for azimuthal angle distributions of charged particles in $pp$ collisions at $\sqrt{s}$ = 5.02 and 13 TeV and in $p$+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV, and compared to the results obtained for low-multiplicity Pb+Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV. These measurements aim to assess the collective nature of particle production. The measurements of multi-particle cumulants confirm the evidence for collective phenomena in $p$+Pb and low-multiplicity Pb+Pb collisions. On the other hand, the $pp$ results for four-particle cumulants do not demonstrate collective behaviour, indicating that they may be biased by contributions from non-flow correlations. A comparison of multi-particle cumulants and derived Fourier harmonics across different collision systems is presented as a function of the charged-particle multiplicity. For a given multiplicity, the measured Fourier harmonics are largest in Pb+Pb, smaller in $p$+Pb and smallest in $pp$ collisions. The $pp$ results show no dependence on the collision energy, nor on the multiplicity.

95 data tables

$c_2\{4\}$ cumulants for reference particles with 0.3 $< p_T <$ 3.0 GeV selected according to $M_{ref}$ (EvSel_$M_{ref}$) for pp collisions at $\sqrt{s}$= 5.02 TeV.

$c_2\{4\}$ cumulants for reference particles with 0.3 $< p_T <$ 3.0 GeV selected according to $M_{ref}$ (EvSel_$M_{ref}$) for pp collisions at $\sqrt{s}$= 13 TeV.

$c_2\{4\}$ cumulants for reference particles with 0.3 $< p_T <$ 3.0 GeV selected according to $M_{ref}$ (EvSel_$M_{ref}$) for pPb collisions at $\sqrt{ s_{NN} }$= 5.02 TeV.

More…

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Nature Phys. 13 (2017) 852-858, 2017.
Inspire Record 1512305 DOI 10.17182/hepdata.77761

Light-by-light scattering ($\gamma\gamma\rightarrow\gamma\gamma$) is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead (Pb) ions. Using 480 $\mu$b$^{-1}$ of Pb+Pb collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, the ATLAS Collaboration reports evidence for the $\gamma\gamma\rightarrow\gamma\gamma$ reaction. A total of 13 candidate events are observed with an expected background of 2.6$\pm$0.7 events. After background subtraction and analysis corrections, the fiducial cross section of the process $\textrm{Pb+Pb}\,(\gamma\gamma)\rightarrow \textrm{Pb}^{(\ast)}\textrm{+}\textrm{Pb}^{(\ast)}\,\gamma\gamma$, for photon transverse energy $E_{\mathrm{T}}>$3 GeV, photon absolute pseudorapidity $|\eta|<$2.4, diphoton invariant mass greater than 6 GeV, diphoton transverse momentum lower than 2 GeV and diphoton acoplanarity below 0.01, is measured to be 70 $\pm$ 24 (stat.) $\pm$ 17 (syst.) nb, which is in agreement with Standard Model predictions.

3 data tables

Detector-level diphoton invariant mass distribution

Detector-level diphoton acoplanarity distribution

The measured total fiducial cross section


Measurement of internal structure of jets in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}} = 2.76$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 379, 2017.
Inspire Record 1511869 DOI 10.17182/hepdata.77789

The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb$^{-1}$ of Pb+Pb data and 4.0 pb$^{-1}$ of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluate the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. No significant dependence of modifications on jet $p_{\mathrm{T}}$ and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.

81 data tables

D(pt) distributions for pp and Pb+Pb collisions, jet rapidity |y| < 2.1.

D(pt) distributions for pp and Pb+Pb collisions, jet rapidity |y| < 0.3.

D(pt) distributions for pp and Pb+Pb collisions, jet rapidity 0.3 < |y| < 0.8.

More…

Measurement of the relative yields of $\psi(2S)$ to $\psi(1S)$ mesons produced at forward and backward rapidity in $p$$+$$p$, $p$$+$Al, $p$$+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 95 (2017) 034904, 2017.
Inspire Record 1487575 DOI 10.17182/hepdata.149529

The PHENIX Collaboration has measured the ratio of the yields of $\psi(2S)$ to $\psi(1S)$ mesons produced in $p$$+$$p$, $p$$+$Al, $p$$+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV over the forward and backward rapidity intervals $1.2<|y|<2.2$. We find that the ratio in $p$$+$$p$ collisions is consistent with measurements at other collision energies. In collisions with nuclei, we find that in the forward ($p$-going or $^{3}$He-going) direction, the relative yield of $\psi(2S)$ mesons to $\psi(1S)$ mesons is consistent with the value measured in \pp collisions. However, in the backward (nucleus-going) direction, the $\psi(2S)$ is preferentially suppressed by a factor of $\sim$2. This suppression is attributed in some models to breakup of the weakly-bound $\psi(2S)$ through final state interactions with comoving particles, which have a higher density in the nucleus-going direction. These breakup effects may compete with color screening in a deconfined quark-gluon plasma to produce sequential suppression of excited quarkonia states.

9 data tables

Summary of the measured ratios of $\Psi$(2S)/$\Psi$(1S) mesons.

Summary of the measured ratios of $\Psi$(2S)/$\Psi$(1S) mesons.

Summary of the measured ratios of $\Psi$(2S)/$\Psi$(1S) mesons.

More…

Measurement of $\sin^2\theta^{\rm lept}_{\rm eff}$ using $e^+e^-$ pairs from $\gamma^*/Z$ bosons produced in $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 93 (2016) 112016, 2016.
Inspire Record 1456804 DOI 10.17182/hepdata.78542

At the Fermilab Tevatron proton-antiproton ($p\bar{p}$) collider, Drell-Yan lepton pairs are produced in the process $p \bar{p} \rightarrow e^+e^- + X$ through an intermediate $\gamma^*/Z$ boson. The forward-backward asymmetry in the polar-angle distribution of the $e^-$ as a function of the $e^+e^-$-pair mass is used to obtain $\sin^2\theta^{\rm lept}_{\rm eff}$, the effective leptonic determination of the electroweak-mixing parameter $\sin^2\theta_W$. The measurement sample, recorded by the Collider Detector at Fermilab (CDF), corresponds to 9.4~fb$^{-1}$ of integrated luminosity from $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV, and is the full CDF Run II data set. The value of $\sin^2\theta^{\rm lept}_{\rm eff}$ is found to be $0.23248 \pm 0.00053$. The combination with the previous CDF measurement based on $\mu^+\mu^-$ pairs yields $\sin^2\theta^{\rm lept}_{\rm eff} = 0.23221 \pm 0.00046$. This result, when interpreted within the specified context of the standard model assuming $\sin^2 \theta_W = 1 - M_W^2/M_Z^2$ and that the $W$- and $Z$-boson masses are on-shell, yields $\sin^2\theta_W = 0.22400 \pm 0.00045$, or equivalently a $W$-boson mass of $80.328 \pm 0.024 \;{\rm GeV}/c^2$.

2 data tables

Best-fit values of $\sin^2\theta_{\rm eff}^{\rm lept}$, $\sin^2\theta_W$ and $M_W$(indirect) from the $ee$-channel measurement of $A_{\rm fb}$ and a combination with the previous CDF measurement based on muon pairs.

Fully corrected $A_{fb}$ measurement for electron pairs with $|y|<1.7$. The measurement uncertainties are bin-by-bin unfolding estimates.