A polarized proton beam extracted from SATURNE II, the Saclay polarized target with$^6$Li compounds, and
Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.
Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.
Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.
We report the first precision measurements of the scaled momentum, the charge multiplicity, and the thrust of hadronic jets in the Breit frame in Deep Inelastic Scattering ν μ N and ν ̄ μ N charged current events over the Q 2 range from 1 to 100 GeV 2 . The neutrino data, obtained in the NOMAD experiment at the CERN SPS, extend the Q 2 -evolution of these parameters by two orders of magnitude, and with commensurate precision, when compared to those reported by the ep and e + e − experiments.
Average neutrino energy. Peak postion of distribution on log(1/z) is presented.
The production of eta pi - system at low mass by the pi- beam in the Coulomb field of Be nuclei was studied. The cross section of the reaction pi- Be --> eta pi- Be was compared to the experimental data on the decay eta --> pi+ pi- gamma and to the theoretical predictions.
.
The cross section for the photoproduction of events containing three jets with a three-jet invariant mass of M_3J > 50 GeV has been measured with the ZEUS detector at HERA. The three-jet angular distributions are inconsistent with a uniform population of the available phase space but are well described by parton shower models and O(alpha alpha_s^2) pQCD calculations. Comparisons with the parton shower model indicate a strong contribution from initial state radiation as well as a sensitivity to the effects of colour coherence.
Cross section in the specified kinematic range.
The measured 3-jet cross-section w.r.t. the 3-jet invariant mass.
The measured distribution in THETA(P=3).
Measurements of the proton structure function $F_2$ for $0.6 < Q^2 < 17 {GeV}^2$ and $1.2 \times 10^{-5} < x <1.9 \times 10^{-3}$ from ZEUS 1995 shifted vertex data are presented. From ZEUS $F_2$ data the slopes $dF_2/d\ln Q^2$ at fixed $x$ and $d\ln F_2/d\ln(1/x)$ for $x < 0.01$ at fixed $Q^2$ are derived. For the latter E665 data are also used. The transition region in $Q^2$ is explored using the simplest non-perturbative models and NLO QCD. The data at very low $Q^2$ $\leq 0.65 {GeV}^2$ are described successfully by a combination of generalised vector meson dominance and Regge theory. From a NLO QCD fit to ZEUS data the gluon density in the proton is extracted in the range $3\times 10^{-5} < x < 0.7$. Data from NMC and BCDMS constrain the fit at large $x$. Assuming the NLO QCD description to be valid down to $Q^2\sim 1 {GeV}^2$, it is found that the $q\bar{q}$ sea distribution is still rising at small $x$ and the lowest $Q^2$ values whereas the gluon distribution is strongly suppressed.
F2.
F2.
F2.
Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.
Integrated D*+- cross sections from the decay channel (1) AND (2).
Differential cross section, as a function of transverse momentum, from decay channel (1).
Differential cross section, as a function of pseudo-rapidity, from channel (1).
The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.
Cross section for diffractive scattering.
Cross section for diffractive scattering.
Cross section for diffracitve scattering.
The photoproduction reaction gamma p -> mu+ mu- p has been studied in ep interactions using the ZEUS detector at HERA. The data sample corresponds to an integrated luminosity of 43.2 pb^{-1}. The Upsilon meson has been observed in photoproduction for the first time. The sum of the products of the elastic Upsilon(1S), Upsilon(2S), Upsilon(3S) photoproduction cross sections with their respective branching ratios is determined to be 13.3 +- 6.0(stat.)^{+2.7}_{-2.3}(syst.) pb at a mean photon-proton centre of mass energy of 120 GeV. The cross section is above the prediction of a perturbative QCD model.
Unresolved UPSILON cross sections (times branching ratio to two muons).
Mean photoproduction cross section for UPSI(1S) production.
We have searched for the production of a selectron and a squark in $e^+p$ collisions at a center-of-mass energy of 300 GeV using the ZEUS detector at HERA. The selectron and squark are sought in the direct decay into the lightest neutralino in the framework of supersymmetric extensions to the Standard Model which conserve R-parity. No evidence for the production of supersymmetric particles has been found in a data sample corresponding to 46.6~pb$^{-1}$ of integrated luminosity. We express upper limits on the product of the cross section times the decay branching ratios as excluded regions in the parameter space of the Minimal Supersymmetric Standard Model.
No description provided.
The differential cross section of Delbr\"{u}ck scattering is measured on a bismuth germanate $Bi_4Ge_3O_{12}$ target at photon energies $140 - 450 MeV$ and scattering angles $2.6 - 16.6 mrad$. A good agreement with the theoretical results, obtained exactly in a Coulomb field, is found.
Axis error includes +- 1.5/1.5 contribution (Error of measurement of the initial photons intensity).