A search for long-lived particles decaying into muon pairs is performed using proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment at the LHC in 2017 and 2018, corresponding to an integrated luminosity of 101 fb$^{-1}$. The data sets used in this search were collected with a dedicated dimuon trigger stream with low transverse momentum thresholds, recorded at high rate by retaining a reduced amount of information, in order to explore otherwise inaccessible phase space at low dimuon mass and nonzero displacement from the primary interaction vertex. No significant excess of events beyond the standard model expectation is found. Upper limits on branching fractions at 95% confidence level are set on a wide range of mass and lifetime hypotheses in beyond the standard model frameworks with the Higgs boson decaying into a pair of long-lived dark photons, or with a long-lived scalar resonance arising from a decay of a b hadron. The limits are the most stringent to date for substantial regions of the parameter space. These results can be also used to constrain models of displaced dimuons that are not explicitly considered in this paper.
Expected and observed limits at 95% CL on the branching fraction B(hb --> PHI X) . B(PHI --> mu+mu-) as a function of signal mass for signal lifetime of 1 mm
Expected and observed limits at 95% CL on the branching fraction B(hb --> PHI X) . B(PHI --> mu+mu-) as a function of signal mass for signal lifetime of 100 mm
Expected and observed limits at 95% CL on the branching fraction B(H --> ZD ZD) . B(ZD --> mu+mu-) as a function of signal mass for signal lifetime of 1 mm
Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering - referred to as single-parton scattering - leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/$\psi$ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process - reconstructed through the decays of J/$\psi$ mesons into pairs of oppositely charged muons - with a statistical significance above five standard deviations. We measured the inclusive fiducial cross section to be 272 $^{+141}_{-104}$ (stat) $\pm$ 17 (syst) fb, and compared it to theoretical expectations for triple-J/$\psi$ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross sections, double- and triple-parton scattering are the dominant contributions for the measured process.
Dimuon invariant mass ($m$), proper decay-length ($L$), transverse momentum ($p_{T}$), rapidity ($y$), and azimuthal angle ($\phi$) of each of the three $J/\psi$ candidates measured in the six triple-$J/\psi$ events passing our selection criteria.
Measured DPS effective cross section
$pp \rightarrow J/\psi J/\psi J/\psi X~$ fiducial cross section
The $\Xi^-_\mathrm{b} \pi^+ \pi^-$ invariant mass spectrum is investigated with an event sample of proton-proton collisions at $\sqrt{s} = $ 13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 140 fb$^{-1}$. The ground state $\Xi^-_\mathrm{b}$ is reconstructed via its decays to J$/\psi \Xi^-$ and J$/\psi \Xi^-\Lambda$K$^-$. A narrow resonance, labeled $\Xi_\mathrm{b}$(6100)$^-$, is observed at a $\Xi^-_\mathrm{b} \pi^+ \pi^-$ invariant mass of 6100.3 $\pm$ 0.2 (stat) $\pm$ 0.1 (syst) $\pm$ 0.6 ($\Xi^-_\mathrm{b}$) MeV, where the last uncertainty reflects the precision of the $\Xi^-_\mathrm{b}$ baryon mass. The upper limit on the $\Xi_\mathrm{b}$(6100)$^-$ natural width is determined to be 1.9 MeV at 95% confidence level. Following analogies with the established excited $\Xi_\mathrm{c}$ baryon states, the new $\Xi_\mathrm{b}$(6100)$^-$ resonance and its decay sequence are consistent with the orbitally excited $\Xi^-_\mathrm{b}$ baryon, with spin and parity quantum numbers $J^P=$ 3/2$^-$.
Measured mass
Measured mass difference
Measured natural width
A search is described for the production of a pair of bottom-type vector-like quarks (VLQs), each decaying into a b or $\mathrm{\bar{b}}$ quark and either a Higgs or a Z boson, with a mass greater than 1000 GeV. The analysis is based on data from proton-proton collisions at a 13 TeV center-of-mass energy recorded at the CERN LHC, corresponding to a total integrated luminosity of 137 fb$^{-1}$. As the predominant decay modes of the Higgs and Z bosons are to a pair of quarks, the analysis focuses on final states consisting of jets resulting from the six quarks produced in the events. Since the two jets produced in the decay of a highly Lorentz-boosted Higgs or Z boson can merge to form a single jet, nine independent analyses are performed, categorized by the number of observed jets and the reconstructed event mode. No signal in excess of the expected background is observed. Lower limits are set on the VLQ mass at 95% confidence level equal to 1570 GeV in the case where the VLQ decays exclusively to a b quark and a Higgs boson, 1390 GeV for when it decays exclusively to a b quark and a Z boson, and 1450 GeV for when it decays equally in these two modes. These limits represent significant improvements over the previously published VLQ limits.
Measured values of the trigger efficiencies for events with $\HT > 1350\GeV$. The uncertainties are statistical only.
Reconstructed VLQ mass distributions for simulated signal events with a generated VLQ mass $m_{B} = 1200\GeV$. A moderate requirement of $\chi^{2}$/ndf < 2$ is applied to the events. Mass distributions for 4-jet (left), 5-jet (center), and 6-jet (right) events are shown for the three decay modes: bHbH (upper row), bHbZ (middle row), and bZbZ (lower row).
Reconstructed VLQ mass distributions for simulated signal events with a generated VLQ mass $m_{B} = 1200\GeV$. A moderate requirement of $\chi^{2}$/ndf < 2$ is applied to the events. Mass distributions for 4-jet (left), 5-jet (center), and 6-jet (right) events are shown for the three decay modes: bHbH (upper row), bHbZ (middle row), and bZbZ (lower row).
Exclusive photoproduction of $\rho^0(770)$ mesons is studied using the H1 detector at the $ep$ collider HERA. A sample of about 900000 events is used to measure single- and double-differential cross sections for the reaction $\gamma p \to \pi^{+}\pi^{-}Y$. Reactions where the proton stays intact (${m_Y{=}m_p}$) are statistically separated from those where the proton dissociates to a low-mass hadronic system ($m_p{<}m_Y{<}10$ GeV). The double-differential cross sections are measured as a function of the invariant mass $m_{\pi\pi}$ of the decay pions and the squared $4$-momentum transfer $t$ at the proton vertex. The measurements are presented in various bins of the photon-proton collision energy $W_{\gamma p}$. The phase space restrictions are $0.5 < m_{\pi\pi} < 2.2$ GeV, ${\vert t\vert < 1.5}$ GeV${}^2$, and ${20 < W_{\gamma p} < 80}$ GeV. Cross section measurements are presented for both elastic and proton-dissociative scattering. The observed cross section dependencies are described by analytic functions. Parametrising the $m_{\pi\pi}$ dependence with resonant and non-resonant contributions added at the amplitude level leads to a measurement of the $\rho^{0}(770)$ meson mass and width at $m_\rho = 770.8\ {}^{+2.6}_{-2.7}$ (tot) MeV and $\Gamma_\rho = 151.3\ {}^{+2.7}_{-3.6}$ (tot) MeV, respectively. The model is used to extract the $\rho^0(770)$ contribution to the $\pi^{+}\pi^{-}$ cross sections and measure it as a function of $t$ and $W_{\gamma p}$. In a Regge asymptotic limit in which one Regge trajectory $\alpha(t)$ dominates, the intercept $\alpha(t{=}0) = 1.0654\ {}^{+0.0098}_{-0.0067}$ (tot) and the slope $\alpha^\prime(t{=}0) = 0.233\ {}^{+0.067 }_{-0.074 }$ (tot) GeV${}^{-2}$ of the $t$ dependence are extracted for the case $m_Y{=}m_p$.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons, differential in the dipion mass. The tabulated cross sections are $\gamma p$ cross sections but can be converted to $ep$ cross sections using the effective photon flux $\Phi_{\gamma/e}$.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons, differential in the dipion mass --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Fit of elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction cross section off protons with a Soeding-inspired analytic function including $\rho$ and $\omega$ meson resonant contributions as well as a continuum background which interfere at the amplitude level. Parameters with subscript "el" and "pd" correspond to elastic and proton-dissociative cross sections, respectively.
A study of excited $\Lambda_\mathrm{b}^0$ baryons is reported, based on a data sample collected in 2016-2018 with the CMS detector at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of up to 140 fb$^{-1}$. The existence of four excited $\Lambda_\mathrm{b}^0$ states: $\Lambda_\mathrm{b}$(5912)$^0$, $\Lambda_\mathrm{b}$(5920)$^0$, $\Lambda_\mathrm{b}$(6146)$^0$, and $\Lambda_\mathrm{b}$(6152)$^0$ in the $\Lambda_\mathrm{b}^0\pi^+\pi^-$ mass spectrum is confirmed, and their masses are measured. The $\Lambda_\mathrm{b}^0\pi^+\pi^-$ mass distribution exhibits a broad excess of events in the region of 6040-6100 MeV, whose origin cannot be discerned with the present data.
Measured masses
Measured mass differences
A top quark mass measurement is performed using 35.9 fb$^{-1}$ of LHC proton-proton collision data collected with the CMS detector at $\sqrt{s} =$ 13 TeV. The measurement uses the $\mathrm{t\overline{t}}$ all-jets final state. A kinematic fit is performed to reconstruct the decay of the $\mathrm{t\overline{t}}$ system and suppress the multijet background. Using the ideogram method, the top quark mass ($m_\mathrm{t}$) is determined, simultaneously constraining an additional jet energy scale factor (JSF). The resulting value of $m_\mathrm{t}$ = 172.34 $\pm$ 0.20 (stat+JSF) $\pm$ 0.70 (syst) GeV is in good agreement with previous measurements. In addition, a combined measurement that uses the $\mathrm{t\overline{t}}$ lepton+jets and all-jets final states is presented, using the same mass extraction method, and provides an $m_\mathrm{t}$ measurement of 172.26 $\pm$ 0.07 (stat+JSF) $\pm$ 0.61 (syst) GeV. This is the first combined $m_\mathrm{t}$ extraction from the lepton+jets and all-jets channels through a single likelihood function.
Measured top quark mass $m_{t}$
Measurements of $\mathrm{B}^*_\mathrm{s2}(5840)^0$ and $\mathrm{B}_\mathrm{s1}(5830)^0$ mesons are performed using a data sample of proton-proton collisions corresponding to an integrated luminosity of 19.6 fb$^{-1}$, collected with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV. The analysis studies $P$-wave $\mathrm{B}^0_\mathrm{S}$ meson decays into $\mathrm{B}^{(*)+}\mathrm{K}^-$ and $\mathrm{B}^{(*)0}\mathrm{K}^0_\mathrm{S}$, where the $\mathrm{B}^+$ and $\mathrm{B}^0$ mesons are identified using the decays $\mathrm{B}^+\to\mathrm{J}/\psi\,\mathrm{K}^+$ and $\mathrm{B}^0\to\mathrm{J}/\psi\,\mathrm{K}^*(892)^0$. The masses of the $P$-wave $\mathrm{B}^0_\mathrm{S}$ meson states are measured and the natural width of the $\mathrm{B}^*_\mathrm{s2}(5840)^0$ state is determined. The first measurement of the mass difference between the charged and neutral $\mathrm{B}^*$ mesons is also presented. The $\mathrm{B}^*_\mathrm{s2}(5840)^0$ decay to $\mathrm{B}^0\mathrm{K}^0_\mathrm{S}$ is observed, together with a measurement of its branching fraction relative to the $\mathrm{B}^*_\mathrm{s2}(5840)^0\to\mathrm{B}^+\mathrm{K}^-$ decay.
The $\mathrm{J}/\psi\mathrm{K}^+$ invariant mass distribution in data
The $\mathrm{J}/\psi\mathrm{K}^{*0}$ invariant mass distribution in data
The $\mathrm{B}^+\pi^-$ invariant mass distribution of the selected candidates in data
The mass of the top quark is measured using a sample of $\mathrm{t\overline{t}}$ events collected by the CMS detector using proton-proton collisions at $\sqrt{s} =$ 13 TeV at the CERN LHC. Events are selected with one isolated muon or electron and at least four jets from data corresponding to an integrated luminosity of 35.9 fb$^{-1}$. For each event the mass is reconstructed from a kinematic fit of the decay products to a $\mathrm{t\overline{t}}$ hypothesis. Using the ideogram method, the top quark mass is determined simultaneously with an overall jet energy scale factor (JSF), constrained by the mass of the W boson in $\mathrm{q\overline{q}'}$ decays. The measurement is calibrated on samples simulated at next-to-leading order matched to a leading-order parton shower. The top quark mass is found to be 172.25 $\pm$ 0.08 (stat+JSF) $\pm$ 0.62 (syst) GeV. The dependence of this result on the kinematic properties of the event is studied and compared to predictions of different models of $\mathrm{t\overline{t}}$ production, and no indications of a bias in the measurements are observed.
Measured top quark mass $m_{t}$
Results of a search for physics beyond the Standard Model in events containing an energetic photon and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. As the number of events observed in data, corresponding to an integrated luminosity of 36.1 $\textrm fb^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV, is in agreement with the Standard Model expectations, exclusion limits in models where dark-matter candidates are pair-produced are determined. For dark-matter production via an axial-vector or a vector mediator in the s-channel, this search excludes mediator masses below 750-1200 GeV for dark-matter candidate masses below 230-480 GeV at 95% confidence level, depending on the couplings. In an effective theory of dark-matter production, the limits restrict the value of the suppression scale $M_{*}$ to be above 790 GeV at 95% confidence level. A limit is also reported on the production of a high-mass scalar resonance by processes beyond the Standard Model, in which the resonance decays to $Z\gamma$ and the Z boson subsequently decays into neutrinos.
Observed event yields in 36.1 fb$^{-1}$ of data compared to expected yields from SM backgrounds in all signal regions, as predicted from the simultaneous fit to their respective CRs. The first three lines report the yields obtained from the inclusive-SR fit, while the two last lines report the yields obtained from the multiple-bin fit. The uncertainty includes both the statistical and systematic uncertainties.
The observed 95% CL exclusion contour for a simplified model of dark-matter production involving an axial-vector operator, Dirac DM and couplings $g_{q}$ = 0.25, $g_{\chi}$ = 1 and $g_{l}$ = 0 as a function of the dark-matter mass $m_{\chi}$ and the mediator mass $m_{\mathrm{med}}$. The plane under the limit curve is excluded.
The expected 95% CL exclusion contour (+1$\sigma$) for a simplified model of dark-matter production involving an axial-vector operator, Dirac DM and couplings $g_{q}$ = 0.25, $g_{\chi}$ = 1 and $g_{l}$ = 0 as a function of the dark-matter mass $m_{\chi}$ and the mediator mass $m_{\mathrm{med}}$. The plane under the limit curve is excluded.