The first search for the Z boson decay to $\tau\tau\mu\mu$ at the CERN LHC is presented, based on data collected by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb$^{-1}$. The data are compatible with the predicted background. For the first time, an upper limit at the 95% confidence level of 6.9 times the standard model expectation is placed on the ratio of the Z $\to$ $\tau\tau\mu\mu$ to Z $\to$ 4$\mu$ branching fractions. Limits are also placed on the six flavor-conserving four-lepton effective-field-theory operators involving two muons and two tau leptons, for the first time testing all such operators.
Distribution of $m_{4\mu}$ after the maximum likelihood fit of the background-only model (stacked histograms) to the data (black points). The nuisance parameters are set to their post-fit values and the signal (black dotted line) is overlaid, scaled to the upper limit on its cross section of 6.9 times the SM expectation. The gray shaded areas in both panels correspond to the total uncertainty in the background prediction. The black vertical bars indicate the statistical uncertainty in the data.
Observed limits at the 95% CL on $C_{\mathrm{LL}}^{2233}$ vs. $C_{\mathrm{LR}}^{2332}$ (red) showing the full range.
Observed limits at the 95% CL on $C_{\mathrm{LR}}^{2233}$ vs. $C_{\mathrm{LL}}^{2332}$ (orange) showing the full range.
A search for the lepton flavor violating $\tau$$\to$ 3$\mu$ decay is performed using proton-proton collision events at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2017-2018, corresponding to an integrated luminosity of 97.7 fb$^{-1}$. Tau leptons produced in both heavy-flavor hadron and W boson decays are exploited in the analysis. No evidence for the decay is observed. The results of this search are combined with an earlier null result based on data collected in 2016 to obtain a total integrated luminosity of 131 fb$^{-1}$. The observed (expected) upper limits on the branching fraction $\mathcal{B}$($\tau$$\to$ 3$\mu$) at confidence levels of 90 and 95% are 2.9 $\times$ 10$^{-8}$ (2.4 $\times$ 10$^{-8}$) and 3.6 $\times$ 10$^{-8}$ (3.0 $\times$ 10$^{-8}$), respectively.
Expected and observed upper limits on the $\tau\to3\mu$ branching fraction at 90% of confidence level for different categories of the analyis.
Expected and observed upper limits on the $\tau\to3\mu$ branching fraction at 95% of confidence level for the Run2 combination.
A search is presented for a third-generation leptoquark (LQ) coupled exclusively to a $\tau$ lepton and a b quark. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV recorded with the CMS detector, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with $\tau$ leptons and a varying number of jets originating from b quarks are considered, targeting the single and pair production of LQs, as well as nonresonant $t$-channel LQ exchange. An excess is observed in the data with respect to the background expectation in the combined analysis of all search regions. For a benchmark LQ mass of 2 TeV and an LQ-b-$\tau$ coupling strength of 2.5, the excess reaches a local significance of up to 2.8 standard deviations. Upper limits at the 95% confidence level are placed on the LQ production cross section in the LQ mass range 0.5-2.3 TeV, and up to 3 TeV for $t$-channel LQ exchange. Leptoquarks are excluded below masses of 1.22-1.88 TeV for different LQ models and varying coupling strengths up to 2.5. The study of nonresonant $\tau\tau$ production through $t$-channel LQ exchange allows lower limits on the LQ mass of up to 2.3 TeV to be obtained.
Product of acceptance and efficiency of a vector LQ signal as a function of LQ mass under the assumption of exclusive LQ couplings to b quarks and $\tau$ leptons. The acceptances and efficiencies are restricted to the sensitive region of $S_\mathrm{T}^\mathrm{MET} > 800\,\mathrm{GeV}$ and are computed with respect to all possible decay modes of two $\tau$ leptons.
Product of acceptance and efficiency of a vector LQ signal as a function of LQ mass under the assumption of exclusive LQ couplings to b quarks and $\tau$ leptons. The acceptances and efficiencies are restricted to the sensitive region of $\chi < 4$ and are computed with respect to all possible decay modes of two $\tau$ leptons.
Postfit distributions of $S_\mathrm{T}^\mathrm{MET}$ in the $\mathrm{e}\mu$ channel of the 0b category for the combined 2016-2018 data set after a simultaneous fit of the background and vector LQ signal to the data. The number of events in each bin are divided by the respective bin width. The last bin includes the overflow.
A search for neutral Higgs bosons in the minimal supersymmetric extension of the standard model (MSSM) decaying to tau-lepton pairs in pp collisions is performed, using events recorded by the CMS experiment at the LHC. The dataset corresponds to an integrated luminosity of 24.6 fb$^{-1}$, with 4.9 fb$^{-1}$ at 7 TeV and 19.7 fb$^{-1}$ at 8 TeV. To enhance the sensitivity to neutral MSSM Higgs bosons, the search includes the case where the Higgs boson is produced in association with a b-quark jet. No excess is observed in the tau-lepton-pair invariant mass spectrum. Exclusion limits are presented in the MSSM parameter space for different benchmark scenarios, $m_\mathrm{h}^\text{max}$, $m_\mathrm{h}^{\text{mod}+}$, $m_\mathrm{h}^{\text{mod}-}$, light-stop, light-stau, $\tau$-phobic, and low-$m_\mathrm{H}$. Upper limits on the cross section times branching fraction for gluon fusion and b-quark associated Higgs boson production are also given.
likelihood scan of the (gg$\rightarrow\phi\rightarrow\tau\tau$) - (gg$\rightarrow$bb$\phi\rightarrow\tau\tau$) - plane the with 40000 grid points at each hypothetical higgs mass, m$_\phi$, at $\sqrt{s}$ = 8 TeV testing the observation against a background hypothesis not including the Standard Model Higgs boson at 125 GeV.
likelihood scan of the (gg$\rightarrow\phi\rightarrow\tau\tau$) - (gg$\rightarrow$bb$\phi\rightarrow\tau\tau$) - plane the with 40000 grid points at each hypothetical higgs mass, m$_\phi$, at $\sqrt{s}$ = 8 TeV testing the $\textbf{asimov dataset of the sum of all backgrounds not including the Standard Model Higgs boson at 125 GeV against a background hypothesis not including the Standard Model Higgs boson at 125 GeV}.
likelihood scan of the (gg$\rightarrow\phi\rightarrow\tau\tau$) - (gg$\rightarrow$bb$\phi\rightarrow\tau\tau$) - plane the with 40000 grid points at each hypothetical higgs mass, m$_\phi$, at $\sqrt{s}$ = 8 TeV testing the observation against a background hypothesis including the Standard Model Higgs boson at 125 GeV.
A search for pair production of third-generation scalar leptoquarks and supersymmetric top quark partners, top squarks, in final states involving tau leptons and bottom quarks is presented. The search uses events from a data sample of proton-proton collisions corresponding to an integrated luminosity of 19.7 inverse femtobarns, collected with the CMS detector at the LHC with sqrt(s) = 8 TeV. The number of observed events is found to be in agreement with the expected standard model background. Third-generation scalar leptoquarks with masses below 740 GeV are excluded at 95% confidence level, assuming a 100% branching fraction for the leptoquark decay to a tau lepton and a bottom quark. In addition, this mass limit applies directly to top squarks decaying via an R-parity violating coupling lambda'[333]. The search also considers a similar signature from top squarks undergoing a chargino-mediated decay involving the R-parity violating coupling lambda'[3jk]. Each top squark decays to a tau lepton, a bottom quark, and two light quarks. Top squarks in this model with masses below 580 GeV are excluded at 95% confidence level. The constraint on the leptoquark mass is the most stringent to date, and this is the first search for top squarks decaying via lambda'[3jk].
The estimated backgrounds, observed event yields, and expected number of signal events for the leptoquark search. For the simulation-based entries, the statistical and systematic uncertainties are shown separately, in that order.
The estimated backgrounds, observed event yields, and expected number of signal events for the top squark search. For the simulation-based entries, the statistical and systematic uncertainties are shown separately, in that order.
Selection efficiencies in % for the signal in the leptoquark search, estimated from the simulation.
Simultaneous measurements of the $t\bar{t}$, $W^+W^-$, and $Z/\gamma^{*}\rightarrow\tau\tau$ production cross-sections using an integrated luminosity of $4.6\,\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 7\,\mathrm{TeV}$ collected by the ATLAS detector at the LHC are presented. Events are selected with two high transverse momentum leptons consisting of an oppositely charged electron and muon pair. The three processes are separated using the distributions of the missing transverse momentum of events with zero and greater than zero jet multiplicities. Measurements of the fiducial cross-section are presented along with results that quantify for the first time the underlying correlations in the predicted and measured cross-sections due to proton parton distribution functions. These results indicate that the correlated NLO predictions for $t\bar{t}$ and $Z/\gamma^{*}\rightarrow\tau\tau$ underestimate the data, while those at NNLO generally describe the data well. The full cross-sections are measured to be $\sigma(t\bar{t}) = 181.2 \pm 2.8^{+9.7}_{-9.5} \pm 3.3 \pm 3.3\,\mathrm{pb}$, $\sigma(W^+W^-) = 53.3 \pm 2.7^{+7.3}_{-8.0} \pm 1.0 \pm 0.5\,\mathrm{pb}$, and $\sigma(Z/\gamma^{*}\rightarrow\tau\tau) = 1174 \pm 24^{+72}_{-87} \pm 21 \pm 9\,\mathrm{pb}$, where the cited uncertainties are due to statistics, systematic effects, luminosity and the LHC beam energy measurement, respectively. The $W^+W^-$ measurement includes the small contribution from Higgs boson decays, $H\rightarrow W^+W^-$.
Total $t\bar{t}$, $WW$, and $Z/\gamma^* \rightarrow \tau\tau$ cross-sections as measured simultaneously in this analysis with symmetrized uncertainties.
Results from a search for supersymmetry in events with four or more leptons including electrons, muons and taus are presented. The analysis uses a data sample corresponding to 20.3 $fb^{-1}$ of proton--proton collisions delivered by the Large Hadron Collider at $\sqrt{s}$ = 8 TeV and recorded by the ATLAS detector. Signal regions are designed to target supersymmetric scenarios that can be either enriched in or depleted of events involving the production of a $Z$ boson. No significant deviations are observed in data from Standard Model predictions and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits at the 95% confidence level on the masses of relevant supersymmetric particles are obtained. In R-parity-violating simplified models with decays of the lightest supersymmetric particle to electrons and muons, limits of 1350 GeV and 750 GeV are placed on gluino and chargino masses, respectively. In R-parity-conserving simplified models with heavy neutralinos decaying to a massless lightest supersymmetric particle, heavy neutralino masses up to 620 GeV are excluded. Limits are also placed on other supersymmetric scenarios.
The ETmiss distribution in VR0Z.
The effective mass distribution in VR0Z.
The ETmiss distribution in VR2Z.
A search for physics beyond the standard model in events with at least three leptons is presented. The data sample, corresponding to an integrated luminosity of 19.5 inverse femtobarns of proton-proton collisions with center-of-mass energy sqrt(s) = 8 TeV, was collected by the CMS experiment at the LHC during 2012. The data are divided into exclusive categories based on the number of leptons and their flavor, the presence or absence of an opposite-sign, same-flavor lepton pair (OSSF), the invariant mass of the OSSF pair, the presence or absence of a tagged bottom-quark jet, the number of identified hadronically decaying tau leptons, and the magnitude of the missing transverse energy and of the scalar sum of jet transverse momenta. The numbers of observed events are found to be consistent with the expected numbers from standard model processes, and limits are placed on new-physics scenarios that yield multilepton final states. In particular, scenarios that predict Higgs boson production in the context of supersymmetric decay chains are examined. We also place a 95% confidence level upper limit of 1.3% on the branching fraction for the decay of a top quark to a charm quark and a Higgs boson (t to c H), which translates to a bound on the left- and right-handed top-charm flavor-violating Higgs Yukawa couplings, lambda[H, tc] and lambda[H, ct], respectively, of sqrt(abs(lambda[H, tc])^2 + abs(lambda[H, ct])^2) < 0.21.
Observed and expected numbers of events with four or more leptons with the scalar sum of jet transverse momentum values HT > 200 GeV. "On-Z" refers to events with at least one E+ E- or MU+ MU- (OSSF) pair with dilepton mass between 75 and 105 GeV, while "Off-Z" refers to events with one or two OSSF pairs, none of which fall in this mass range. The OSSFN designation refers to the number of E+ E- and MU+ MU- pairs in the event. Search channels binned in ET have been combined into coarse ET bins for the purposes of presentation.
Observed and expected numbers of events with four or more leptons with the scalar sum of jet transverse momentum values HT < 200 GeV. "On-Z" refers to events with at least one E+ E- or MU+ MU- (OSSF) pair with dilepton mass between 75 and 105 GeV, while "Off-Z" refers to events with one or two OSSF pairs, none of which fall in this mass range. The OSSFN designation refers to the number of E+ E- and MU+ MU- pairs in the event. Search channels binned in ET have been combined into coarse ET bins for the purposes of presentation.
Observed and expected numbers of events with exactly three leptons with the scalar sum of jet transverse momentum values HT > 200 GeV. "On-Z" refers to events with at least one E+ E- or MU+ MU- (OSSF) pair with dilepton mass between 75 and 105 GeV, while "Off-Z" refers to events with one or two OSSF pairs, none of which fall in this mass range. The OSSFN designation refers to the number of E+ E- and MU+ MU- pairs in the event. Search channels binned in ET have been combined into coarse ET bins for the purposes of presentation.
A search for pair-produced third generation scalar leptoquarks is presented, using proton-proton collisions at $\sqrt{s}$= 7 TeV at the LHC. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 4.7 fb$^{-1}$. Each leptoquark is assumed to decay to a tau lepton and a b-quark with a branching fraction equal to 100%. No statistically significant excess above the Standard Model expectation is observed. Third generation leptoquarks are therefore excluded at 95% confidence level for masses less than 534 GeV.
The expected and observed 95% credibility upper limits on the cross-section of third generation leptoquark pair-production for the electron channel assuming a branching fraction LQ->tau b of 1.0, as a function of leptoquark mass. The 1(2) sigma errors on the expected limit represent all sources of systematic and statistical uncertainty. The expected NLO production cross-section for third generation scalar leptoquarks and its corresponding theoretical uncertainty is also included.
The expected and observed 95% credibility upper limits on the cross-section of third generation leptoquark pair-production for the muon channel assuming a branching fraction LQ->tau b of 1.0, as a function of leptoquark mass. The 1(2) sigma errors on the expected limit represent all sources of systematic and statistical uncertainty. The expected NLO production cross-section for third generation scalar leptoquarks and its corresponding theoretical uncertainty is also included.
The expected and observed 95% credibility upper limits on the cross-section of third generation leptoquark pair-production for the combined assuming a branching fraction LQ->tau b of 1.0, as a function of leptoquark mass. The 1(2) sigma errors on the expected limit represent all sources of systematic and statistical uncertainty. The expected NLO production cross-section for third generation scalar leptoquarks and its corresponding theoretical uncertainty is also included.
A search for supersymmetry (SUSY) in events with large missing transverse momentum, jets, and at least one hadronically decaying tau lepton, with zero or one additional light lepton (e/mu), has been performed using 4.7 fb-1 of proton-proton collision data at sqrt(s) = 7 TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed and a 95% confidence level visible cross-section upper limit for new phenomena is set. In the framework of gauge-mediated SUSY-breaking models, lower limits on the mass scale Lambda are set at 54 TeV in the regions where the stau is the next-to-lightest SUSY particle (tan(beta) > 20). These limits provide the most stringent tests to date of GMSB models in a large part of the parameter space considered.
The observed number of signal events as a function of Lambda and Tan(Beta).
The Acceptance, Efficiency and Acceptance x Efficiency for the single tau channel as a function of Lambda and Tan(Beta).
The Acceptance, Efficiency and Acceptance x Efficiency for the two tau channel as a function of Lambda and Tan(Beta).