We present the first spin alignment measurements for the $K^{*0}(892)$ and $\phi(1020)$ vector mesons produced at mid-rapidity with transverse momenta up to 5 GeV/c at $\sqrt{s_{NN}}$ = 200 GeV at RHIC. The diagonal spin density matrix elements with respect to the reaction plane in Au+Au collisions are $\rho_{00}$ = 0.32 $\pm$ 0.04 (stat) $\pm$ 0.09 (syst) for the $K^{*0}$ ($0.8<p_T<5.0$ GeV/c) and $\rho_{00}$ = 0.34 $\pm$ 0.02 (stat) $\pm$ 0.03 (syst) for the $\phi$ ($0.4<p_T<5.0$ GeV/c), and are constant with transverse momentum and collision centrality. The data are consistent with the unpolarized expectation of 1/3 and thus no evidence is found for the transfer of the orbital angular momentum of the colliding system to the vector meson spins. Spin alignments for $K^{*0}$ and $\phi$ in Au+Au collisions were also measured with respect to the particle's production plane. The $\phi$ result, $\rho_{00}$ = 0.41 $\pm$ 0.02 (stat) $\pm$ 0.04 (syst), is consistent with that in p+p collisions, $\rho_{00}$ = 0.39 $\pm$ 0.03 (stat) $\pm$ 0.06 (syst), also measured in this work. The measurements thus constrain the possible size of polarization phenomena in the production dynamics of vector mesons.
The spin-density matrix elements $\rho_{00}$ with respect to the reaction plane in midcentral $Au+Au$ collisions at $\sqrt{s_{NN}}=200$ GeV versus $p_{T}$ of the vector meson. The sizes of the statistical uncertainties are indicated by error bars, and the systematic uncertainties by caps. The $K^{∗0}$ data points have been shifted slightly in $p_{T}$ for clarity. The dashed horizontal line indicates the unpolarized expectation $\rho_{00}=1/3$. The bands and continuous horizontal lines show predictions discussed in the text.
The dependence of $\rho_{00}$ with respect to the reaction plane on the number of participants at midrapidity in $Au+Au$ collisions at $\sqrt{s_{NN}}=200$ GeV. The sizes of the statistical uncertainties are indicated by error bars and the systematic uncertainties by caps. The $\phi$ data for $p_{T} > 2$ GeV/$c$ and the $K^{∗0}$ data points have been shifted slightly in $\langle N_{\scriptsize{\mbox{part}}}\rangle$ for clarity. The dashed horizontal line indicates the unpolarized expectation $\rho_{00}=1/3$.
The spin-density matrix elements $\rho_{00}$ with respect to the production plane in midcentral $Au+Au$ and $p+p$ collisions at $\sqrt{s_{NN}}=200$ GeV versus $p_{T}$ of the vector meson. The sizes of the statistical uncertainties are indicated by error bars and the systematic uncertainties by caps. The $K^{*0}$ and the $\phi$ $p+p$ data points have been shifted slightly in $p_{T}$ for clarity. The dashed horizontal line indicates the unpolarized expectation $\rho_{00}=1/3$.
Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR collaboration presents a measurement of rho^0 and direct pi^+pi^- photoproduction in ultra-peripheral relativistic heavy ion collisions at sqrt(s_{NN})=200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross-section of sigma(AuAu) -> Au^*Au^*rho^0 = 530 pm 19 (stat.) pm 57 (syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The rho^0 transverse momentum spectrum (p_{T}^2) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus/ we find sigma_{inc}/sigma_{coh} = 0.29 pm 0.03 (stat.) pm 0.08 (syst.). The ratio of direct pi^+pi^- to rho^0 production is comparable to that observed in gamma p collisions at HERA, and appears to be independent of photon energy. Finally, the measured rho^0 spin helicity matrix elements agree within errors with the expected s-channel helicity conservation.
ZDC spectra obtained with the minimum bias sample after the $\rho^{0}$ selection cuts are applied, and fit with three Gaussians. The east ZDC is shown on the left and the west ZDC is shown on the right. The ratio of numbers of candidates in the West ZDC of 1n:2n:3n is 1: 0.48 $\pm$ 0.03: 0.42 $\pm$ 0.03, while in the East ZDC, we find 1n:2n:3n is 1: 0.46 $\pm$ 0.03: 0.42 $\pm$ 0.03.
ZDC spectra obtained with the minimum bias sample after the $\rho^{0}$ selection cuts are applied, and fit with three Gaussians. The east ZDC is shown on the left and the west ZDC is shown on the right. The ratio of numbers of candidates in the West ZDC of 1n:2n:3n is 1: 0.48 $\pm$ 0.03: 0.42 $\pm$ 0.03, while in the East ZDC, we find 1n:2n:3n is 1: 0.46 $\pm$ 0.03: 0.42 $\pm$ 0.03.
The invariant mass distribution for the coherently produced $\rho^{0}$ candidates from the minimum bias sample with the cut on the $\rho^{0}$ transverse momentum $p_{T}$ < 150 MeV/c. The hatched area is the contribution from the combinatorial background. The solid line corresponds to Eq. 3 which encompasses the Breit-Wigner (dashed), the mass independent contribution from the direct $\pi^{+}\pi^{-}$ production (dash-dotted), and the interference term(dotted).
This paper reports measurements of processes: e+e- -> gamma KsK+pi-, e+e- -> gamma K+K-pi0, e+e- -> gamma phi eta, and e+e- -> gamma phi pi0. The initial state radiated photon allows to cover the hadronic final state in the energy range from thresholds up to ~4.6 GeV. The overall size of the data sample analyzed is 232 fb-1, collected by the BaBar detector running at the PEP-II e+e- storage ring. From the Dalitz plot analysis of the KsK+pi- final state, moduli and relative phase of the isoscalar and the isovector components of the e+e- -> K K*(892) cross section are determined. Parameters of phi and rho recurrences are also measured, using a global fitting procedure which exploits the interconnection among amplitudes, moduli and phases of the e+e- -> KsK+pi-, K+K-pi0, phi eta final states. The cross section for the OZI-forbidden process e+e- -> phi pi0, and the J/psi branching fractions to KK*(892) and K+K-eta are also measured.
The cross section for E+ E- --> K0S K+ PI- + CC with statistical errors only.
The cross section for E+ E- --> K+ K- PI0 with statistical errors only.
The cross section for E+ E- --> PHI PI0 with statistical errors only.
We report a new STAR measurement of the longitudinal double-spin asymmetry A_LL for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of sqrt(s) = 200 GeV. The data, which cover jet transverse momenta 5 < p_T < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit of polarized deep-inelastic scattering measurements.
(a) The raw detected jet yield in data (points) compared with the STAR Monte Carlo simulations. (b) Correlation between the reconstructed jet transverse momenta at the particle and detector levels. The points indicate the means and the vertical error bars show the r.m.s. widths of the associated particle jet distributions within the detector jet bins. The dashed line represents the condition when the particle and detector jet $p_{T}$ values are equal.
(a) The raw detected jet yield in data (points) compared with the STAR Monte Carlo simulations. (b) Correlation between the reconstructed jet transverse momenta at the particle and detector levels. The points indicate the means and the vertical error bars show the r.m.s. widths of the associated particle jet distributions within the detector jet bins. The dashed line represents the condition when the particle and detector jet $p_{T}$ values are equal.
Longitudinal double-spin asymmetry $A_{LL}$ for inclusive jet production at $\sqrt{s_{NN}}$ = 200 GeV versus jet $p_{T}$. The points show results for particle jets with statistical error bars, while the curves show predictions for NLO parton jets from one global analysis [14]. The gray boxes indicate the systematic uncertainties on the measured $A_{LL}$ values (vertical) and in the corrections to the measured jet $p_{T}$ and the conversion between particle jet and NLO parton jet $p_{T}$ (horizontal).
We study the processes $e^+ e^-\to 2(\pi^+\pi^-)\pi^0\gamma$, $2(\pi^+\pi^-)\eta\gamma$, $K^+ K^-\pi^+\pi^-\pi^0\gamma$ and $K^+ K^-\pi^+\pi^-\eta\gamma$ with the hard photon radiated from the initial state. About 20000, 4300, 5500 and 375 fully reconstructed events, respectively, are selected from 232 fb$^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective $e^+ e^-$ center-of-mass energy, so that the obtained cross sections from the threshold to about 5 GeV can be compared with corresponding direct \epem measurements, currently available only for the $\eta\pi^+\pi^-$ and $\omega\pi^+\pi^-$ submodes of the $e^+ e^-\to 2(\pi^+\pi^-)\pi^0$ channel. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-\to\omega(782)\pi^+\pi^-$ and study the $\omega(1420)$ and $\omega(1650)$ resonances. In the charmonium region, we observe the $J/\psi$ in all these final states and several intermediate states, as well as the $\psi(2S)$ in some modes, and we measure the corresponding branching fractions.
Measured cross section for E+ E- --> 2(PI+ PI-) PI0 with statistical errorsonly.
Measured cross section for E+ E- --> ETA PI+ PI- with statistical errors only.
Measured cross section for E+ E- --> OMEGA PI+ PI- with statistical errors only.
We report the measurement of Lamda and Anti-Lamda yields and inverse slope parameters in d + Au collisions at sqrt(s_NN) = 200 GeV at forward and backward rapidities (y = +- 2.75), using data from the STAR forward time projection chambers. The contributions of different processes to baryon transport and particle production are probed exploiting the inherent asymmetry of the d + Au system. Comparisons to model calculations show that the baryon transport on the deuteron side is consistent with multiple collisions of the deuteron nucleons with gold participants. On the gold side HIJING based models do not describe the measured particle yields while models with initial state nuclear effects and/or hadronic rescattering do. The Multi-Chain Model can provide a good description of the net baryon density in d + Au collisions at RHIC, and the derived parameters of the model agree with those from nuclear collisions at lower energies.
(Color online) a) Invariant mass distribution of $\Lambda$ candidates on the deuteron side with estimated $K_{s}^{0}$ background distribution, b) and c) show the background subtracted $\Lambda$ and $\overline{\Lambda}$ invariant mass distributions. The widths of the peaks are due to the limited momentum resolution of the detectors, and are reproduced by simulations.
(Color online) a) Invariant mass distribution of $\Lambda$ candidates on the deuteron side with estimated $K_{s}^{0}$ background distribution, b) and c) show the background subtracted $\Lambda$ and $\overline{\Lambda}$ invariant mass distributions. The widths of the peaks are due to the limited momentum resolution of the detectors, and are reproduced by simulations.
(Color online) a) Invariant mass distribution of $\Lambda$ candidates on the deuteron side with estimated $K_{s}^{0}$ background distribution, b) and c) show the background subtracted $\Lambda$ and $\overline{\Lambda}$ invariant mass distributions. The widths of the peaks are due to the limited momentum resolution of the detectors, and are reproduced by simulations.
Differential cross sections for the reaction $\gamma p \to p \pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.
Differential cross section for indicent photon energy 675 MeV.
Differential cross section for indicent photon energy 725 MeV.
Differential cross section for indicent photon energy 775 MeV.
The differential cross sections \sigma_0=\sigma_T+\epsilon \sigma_L, \sigma_{LT}, and \sigma_{TT} of \pi^0 electroproduction from the proton were measured from threshold up to an additional center of mass energy of 40 MeV, at a value of the photon four-momentum transfer of Q^2= 0.05 GeV^2/c^2 and a center of mass angle of \theta=90^\circ. By an additional out-of-plane measurement with polarized electrons \sigma_{LT'} was determined. This showed for the first time the cusp effect above the \pi^+ threshold in the imaginary part of the s-wave. The predictions of Heavy Baryon Chiral Perturbation Theory are in disagreement with these data. On the other hand, the data are somewhat better predicted by the MAID phenomenological model and are in good agreement with the dynamical model DMT.
The separated cross section SIG(0), SIG(LT) and SIG(TT).
Beam helicity asymmetry.
We report on the observed differences in production rates of strange and multi-strange baryons in Au+Au collisions at sqrts = 200 GeV compared to pp interactions at the same energy. The strange baryon yields in Au+Au collisions, then scaled down by the number of participating nucleons, are enhanced relative to those measured in pp reactions. The enhancement observed increases with the strangeness content of the baryon, and increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at lower collision energy sqrts =17.3 GeV. The previous observations are for the bulk production, while at intermediate pT, 1 < pT< 4 GeV/c, the strange baryons even exceed binary scaling from pp yields.
Midrapidity E(i) as a function of $<N_{part}>$ for $\Lambda$, $\bar{\Lambda}$ ($|y| < 1.0$), $\Xi^{-}$, $\bar{\Xi}^{+}$ ($|y| < 0.75$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature. Grand Canonical Model arrows(values in brackets), for $\Lambda$ E(2.6) and T(165 MeV) for $\bar{\Lambda}$ E(2.2) and T(170 MeV), for $\Xi$ E(10.7) and T(165 MeV), for anti-$\Xi$ E(7.5) and T(170 MeV).
Midrapidity E(i) as a function of $<N_{part}>$ for $\Omega^{-}+\bar{\Omega}^{+}$ ($|y| < 0.75$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature.
Midrapidity E(i) as a function of $<N_{part}>$ for inclusive $p$ ($|y| < 0.5$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature.
We report the first measurement of the opening angle distribution between pairs of jets produced in high-energy collisions of transversely polarized protons. The measurement probes (Sivers) correlations between the transverse spin orientation of a proton and the transverse momentum directions of its partons. With both beams polarized, the wide pseudorapidity ($-1 \leq \eta \leq +2$) coverage for jets permits separation of Sivers functions for the valence and sea regions. The resulting asymmetries are all consistent with zero and considerably smaller than Sivers effects observed in semi-inclusive deep inelastic scattering (SIDIS). We discuss theoretical attempts to reconcile the new results with the sizable transverse spin effects seen in SIDIS and forward hadron production in pp collisions.
Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.
Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.
Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.