Charge-Exchange Scattering of Negative Pions by Hydrogen at 230, 260, 290, 317, and 371 Mev

Caris, John C. ; Kenney, Robert W. ; Perez-Mendez, Victor ; et al.
Phys.Rev. 121 (1961) 893-904, 1961.
Inspire Record 944987 DOI 10.17182/hepdata.805

The differential cross section for charge-exchange scattering of negative pions by hydrogen has been observed at 230, 260, 290, 317, and 371 Mev. The reaction was observed by detecting one gamma ray from the π0 decay with a scintillation-counter telescope. A least-squares analysis was performed to fit the observations to the function dσdω=Σl=15alPl−1(cosθ) in the c.m. frame. The best fit to our experimental measurements requires only s- and p-wave scattering. The results (in mb) are: The least-squares analysis indicates that d-wave scattering is not established in this energy range.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Total Cross Sections for Negative Pions on Protons at 230, 290, 370, 427, and 460 Mev

Caris, John C. ; Goodwin, Lester K. ; Kenney, Robert W. ; et al.
Phys.Rev. 122 (1961) 262-264, 1961.
Inspire Record 944986 DOI 10.17182/hepdata.26810

Total cross sections for negative pions on protons were measured at laboratory energies of 230, 290, 370, 427, and 460 Mev. The measurements were made in the same pion beams as and at energies identical with those of our π−−p differential scattering experiments. Comparisons of the total and differential scattering can be made with the dispersion theory at a given energy without introducing the systematic errors that would normally enter due to uncertainties in the parameters of more than one pion beam. The measured total cross sections are found to agree within statistics with other measured values, and with the sums of elastic, inelastic, and charge-exchange cross sections measured at this laboratory. The results are:

1 data table

No description provided.


Elastic-Differential Cross Section of pi++p at 1.5, 2.0, and 2.5 BeV/c

Cook, Victor ; Cork, Bruce ; Holley, William R. ; et al.
Phys.Rev. 130 (1963) 762-765, 1963.
Inspire Record 944975 DOI 10.17182/hepdata.599

We measured elastic-scattering angular distributions for π++p scattering at 1.5, 2.0, and 2.5 BeV/c using spark chambers to detect scattered pions and protons. A bump that decreases in amplitude with increasing momentum is observed in the backward hemisphere in the 1.5- and 2.0-BeV/c distributions, but is not observed in the 2.5-BeV/c distributions. It appears reasonable to attribute this phenomenon to the 1.45-BeV/c resonance observed in the π++p total cross section. The data are compared with π−+p data and are found to support the theoretical prediction that the scattering cross sections for both charge states should become equal at high energies. We fit the angular distributions with a power series in cosθ*, and compare the extrapolated values for the scattering cross section in the backward direction with the calculation of the neutron-exchange pole contribution to the cross section. The "elementary" neutron-pole term contribution is calculated to be 90 mb/sr at 2.0 BeV/c, in violent disagreement with the extrapolated value, ≈0.5 mb/sr.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic Scattering of Negative Pions on Protons in the Energy Range 500-1000 MeV

Helland, Jerome A. ; Wood, Calvin D. ; Devlin, Thomas J. ; et al.
Phys.Rev. 134 (1964) B1079-B1086, 1964.
Inspire Record 46851 DOI 10.17182/hepdata.598

Differential cross sections for the elastic scattering of negative pi mesons on protons (π−−p→π−−p) were measured at the Berkeley Bevatron at five laboratory kinetic energies of the pion between 500 and 1000 MeV. The results were least-squares fitted with a power series in the cosine of the center-of-mass scattering angle, and total elastic cross sections for π−−p→π−−p were obtained by integrating under the fitted curves. The coefficients of the cosine series are shown plotted versus the incident pion laboratory kinetic energy. These curves display as a striking feature a large value of the coefficient of cos5θ* peaking in the vicinity of the 900-MeV resonance. This implies that a superposition of F52 and D52 partial waves is prominent in the scattering at this energy, since the coefficients for terms above cos5θ* are negligible. One possible explanation is that the F52 enhancement comes from an elastic resonance in the isotopic spin T=12 state, consistent with Regge-pole formalism, and the D52 partial-wave state may be enhanced by inelastic processes. At 600 MeV the values of the coefficients do not seem to demand the prominence of any single partial-wave state, although the results are compatible with an enhancement in the J=32 amplitude. A table listing quantum numbers plausibly associated with the various peaks and "shoulders" seen in the π±−p total cross-section curves is presented.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Angular Distribution of Charge Exchange and Inelastic Neutrons in $\pi^- - p$ Interactions at 313 and 371 MeV

Lind, Don L. ; Barish, Barry C. ; Ku, Richard J. ; et al.
Phys.Rev. 138 (1965) B1509-B1517, 1965.
Inspire Record 1186787 DOI 10.17182/hepdata.467

Neutron angular distributions from the charge-exchange (π0n) and inelastic modes (π0π0n,π+π−n) of the π−−p interaction have been investigated at 313 and 371 MeV incident-pion kinetic energy. The data were obtained with an electronic counter system. Elastic and inelastic neutrons were separated in the all-neutral final states by time of flight. At both energies the charge-exchange differential cross section at the forward neutron angles differs from that determined by Caris et al. from measurements of the π0-decay gamma distributions, but generally agrees with the phase-shift-analysis calculations of Roper. The distribution of inelastic neutrons from both modes shows a strong preference for low center-of-mass neutron energies. The distribution of these neutrons does not correspond to that expected from the I=0, π−π interaction (ABC effect) suggested to account for the anomaly in p−d collisions observed by Abashian et al. Finally, all available charge-exchange differential-cross-section data from this and other experiments were combined by at least-squares fit to a Legendre expansion of the form dσdΩ*(cosθπ0*)=Σl=0NalPl(cosθπ0*) with the following results (in mb/sr):

6 data tables

No description provided.

No description provided.

No description provided.

More…

Pion-Proton Charge-Exchange Scattering from 500 to 1300 MeV

Chiu, Charles B. ; Eandi, Richard D. ; Helmholz, A.Carl ; et al.
Phys.Rev. 156 (1967) 1415-1426, 1967.
Inspire Record 52278 DOI 10.17182/hepdata.750

Differential cross sections for the reaction π−p→π0n were measured at nine incident-pion kinetic energies in the interval from 500 to 1300 MeV. The negative pion beam from the bevatron was focused on a liquidhydrogen target completely surrounded by a cubic array of six steel-plate spark chambers. The spark chambers were triggered on events with neutral final states. Charge-exchange events were identified from the one-shower and two-shower events in the spark-chamber pictures. By the Monte Carlo technique, the π0 distributions were calculated from the bisector distributions of the two-shower π0 events together with the observed γ-ray distributions of the one-shower π0 events. These π0 distributions were fitted with both Legendre-polynomial expansions and power-series expansions by the method of least squares. The extrapolated forward differential cross sections are in good agreement with the dispersion calculations. The Legendre coefficients for the differential cross sections in isospin state T=12 were obtained by combining our results with available data on π±p elastic scattering. In the light of existing phase-shift solutions, the behavior of these coefficients is discussed. The D5F5 interference term that peaks near 900 MeV is verified to be in isospin state T=12 only. We report here also the total neutral cross sections and the cross sections for the production of neutral multipion final states 2π0n and 3π0n. The 4π solid angle and the calibrated energy response of the spark chambers contribute to the accuracy of the results.

19 data tables

No description provided.

No description provided.

No description provided.

More…

Study of Electron-Positron Annihilation into pi+pi- at 775 MeV with the Orsay Storage Ring

Augustin, J.E. ; Bizot, J.C. ; Buon, J. ; et al.
Phys.Rev.Lett. 20 (1968) 126-129, 1968.
Inspire Record 54563 DOI 10.17182/hepdata.21756

None

1 data table

No description provided.


$\pi^+$ $\pi^-$ production in $e^+$ $e^-$ collisions and $\rho$-$\omega$ interference

Augustin, J.E. ; Benaksas, D. ; Buon, J. ; et al.
(1969) 35, 1969.
Inspire Record 58289 DOI 10.17182/hepdata.37427

None

1 data table

RELATIVE PRODUCTION OF PION PAIRS WITHOUT RADIATIVE CORRECTIONS.


Study of electron-positron annihilation into pi-plus pi-minus on the rho-neutral resonance

Augustin, J.E. ; Bizot, J.C. ; Buon, J. ; et al.
Phys.Lett.B 28 (1969) 508-512, 1969.
Inspire Record 56683 DOI 10.17182/hepdata.29076

The electromagnetic form factor of the pion has been determined in the ϱ o resonance region by measuring the absolute cross section of the reaction e + e − → π + π − with the Orsay storage ring. More than 800 pion pairs have been detected. The excitation curve has been fitted with a Breit-Wigner formula which leads to the following values: σ peak = (1.69 ± 0.21) 10 −30 cm 2 ; m ϱ = (770 ± 4) MeV ; Γ ϱ = (111 ± 6) MeV . The partial width of the ϱ o going into e + e − thus obtained is: Γ ϱ → e + e − =(7.36±0.7) keV .

1 data table

No description provided.


Study of the phi meson production with the orsay electron-positron colliding beams

Augustin, J.E. ; Bizot, J.C. ; Buon, J. ; et al.
Phys.Lett.B 28 (1969) 517-520, 1969.
Inspire Record 56680 DOI 10.17182/hepdata.6179

We have measured the e + e − → φ reaction by the K S 0 K L 0 and 3 π decay modes of the φ. We have deduced Γ ( φ → all), Γ ( φ →e + e − ), as well as B ( φ →K S 0 K L 0 ), B ( φ →K + K − ) and B ( φ → π + π − π 0 ).

3 data tables

No description provided.

RESONANCE FIT TO 12 DATA POINTS AROUND PHI FOR EACH CHANNEL GIVES PHI WIDTH OF 4.2 +- 0.9 MEV AND BR(PHI --> PI+ PI0 PI-/PHI --> KL KS) OF 0.667 +- 0.157 (RATHER HIGH).

No description provided.