Elastic π±−p, K−−p, and p¯−p scattering cross sections have been measured using three different experimental arrangements covering the c.m. angular regions ∼20°-120°, ∼135°-169°, and ∼165°-180° at incident momenta from 6 to 17 GeV/c. In the region 130°-180°, only π±−p scattering was measured. In the angular region near 180°, the energy dependences and shapes of the π−p backward peaks were determined up to crossed-momentum transfers of u∼−2 (GeV/c)2. At all energies, the π+−p backward peak had a sharp dip at u=−0.13 (GeV/c)2, with no similar effect in the π−−p case. Nearly complete angular distributions of π−−p elastic scattering from 20° to 180° have been obtained at 6 and 10 GeV/c. These results at 6 and 10 GeV/c as well as at 8 GeV/c reveal a sharp dip in π−−p scattering at t=−3 (GeV/c)2. Several structures in the form of dips or shoulders were seen in the p¯−p angular distributions also, with less pronounced structure observed in K−−p scattering. At fixed momentum transfer, all cross sections when expressed as dσdt appear to be decreasing with increasing energy.
'1'. '2'. '3'. '4'.
No description provided.
No description provided.
Employing a neutral kaon beam at the Argonne Zero Gradient Synchrotron, a high-resolution magnetic spectrometer, and a neutron detector, differential cross sections have been obtained in the forward direction [0.045<|t|<0.18 (GeV/c)2] for the reaction KL0p→K+n. Previous studies of the time-reversed process in deuterium, K+d→K0p(p), have not yielded direct cross-section measurements in the forward direction because there is an inhibition of the non-spin-flip process in deuterium due to the Pauli exclusion principle. Nevertheless, our data are in agreement with the extracted free-neutron cross sections of deuterium studies as determined from the impulse and closure approximations.
No description provided.
No description provided.
No description provided.
In a scintillation-counter experiment, we have observed two narrow, neutral mesons in addition to the well-established η′ (958) in the reaction π−p→M0n at 2.4 GeVc. We observe a mass of 940.5 ± 1.7 MeV, Γ<10.4 MeV for the M0(940), and a mass of 962.9 ± 1.7 MeV, Γ<5.9 MeV for the δ0.
CROSS SECTION OVERALL UNCERTAINTY (APART FROM ETA PRODUCTION) ABOUT 30 PCT.
Differential cross sections for the elastic scattering of negative pions from hydrogen have been measured over a limited range of squared four-momentum transfer (t) in the vicinity of t≃−3 (GeV/c)2 for incident pion momenta of 2.51, 2.76, and 3.01 GeV/c. These measurements confirm the existence of a minimum in the differential cross section in this region of incident momentum and scattering angle. The minimum occurs at a smaller value of t [t≃−2.6 (GeV/c)2] than has been observed at higher momenta.
No description provided.
No description provided.
No description provided.
The differential cross sections for the elastic scattering of negative pions by deuterons have been measured for 2.01-, 3.77-, and 5.53-GeV/c incident pion momenta, over an interval of the squared four-momentum transfer from -0.25 (GeV/c)2 to ∼-1.0 (GeV/c)2. The results are consistent with calculations based on a Glauber model of the scattering process.
No description provided.
No description provided.
No description provided.
The π−p elastic scattering differential cross section has been obtained at 18 incident momenta from 1.71 to 5.53 GeV/c. The measurements were taken over a limited range of squared four-momentum transfer t near the forward direction. The statistical accuracy and resolution of these data are comparable to, or better than, existing data. The parameter b in the expression dσdt=Aebt has been determined at each of our incident momenta, and a large (∼25%) enhancement in b as a function of momentum is observed at a c.m. energy of ∼2290 MeV. The relation of this bump in b with the well-established bump in the total π−p cross section at ∼2200 MeV is discussed.
No description provided.
No description provided.
No description provided.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
We report on measurements of hadronic and leptonic cross sections and leptonic forward-backward asymmetries performed with the L3 detector in the years 1993-95. A total luminosity of 103 pb^-1 was collected at centre-of-mass energies \sqrt{s} ~ m_Z and \sqrt{s} ~ m_Z +/- 1.8 GeV which corresponds to 2.5 million hadronic and 245 thousand leptonic events selected. These data lead to a significantly improved determination of Z parameters. From the total cross sections, combined with our measurements in 1990-92, we obtain the final results: m_Z = 91189.8 +/- 3.1 MeV, Gamma_Z = 2502.4 +/- 4.2 MeV, Gamma_had = 1741.1 +/- 3.8 MeV, Gamma_l = 84.14 +/- 0.17 MeV. An invisible width of Gamma_inv = 499.1 +/- 2.9 MeV is derived which in the Standard Model yields for the number of light neutrino species N_nu = 2.978 +/- 0.014. Adding our results on the leptonic forward-backward asymmetries and the tau polarisation, the effective vector and axial-vector coupling constants of the neutral weak current to charged leptons are determined to be \bar{g}_V^l = -0.0397 +/- 0.0017 and \bar{g}_A^l = -0.50153 +/- 0.00053.Including our measurements of the Z -> b \bar{b} forward-backward and quark charge asymmetries a value for the effective electroweak mixing angle of sin^2\bar{\theta}_W = 0.23093 +/- 0.00066 is derived. All these measurements are in good agreement with the Standard Model of electroweak interactions. Using all our measurements of electroweak observables an upper limit on the mass of the Standard Model Higgs boson of m_H < 133 GeV is set at 95% confidence level.
Updated values of coupling constants and electroweak mixing angle.
Cross sections for hadron production from the 1993 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.105 PCT.
Cross sections for hadron production from the 1994 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.088 PCT.
The cross section for the reaction $ e p \to e^{\prime} p \pi^{+} \pi^{-}$ was measured in the resonance region for 1.4$<$W$<$2.1 GeV and 0.5$<Q^{2}<$1.5 GeV$^{2}$/c$^{2}$ using the CLAS detector at Jefferson Laboratory. The data shows resonant structures not visible in previous experiments. The comparison of our data to a phenomenological prediction using available information on $N^{*}$ and $\Delta$ states shows an evident discrepancy. A better description of the data is obtained either by a sizeable change of the properties of the $P_{13}$(1720) resonance or by introducing a new baryon state, not reported in published analyses.
Measured cross section DSIG/DM(PI+PI-) for the W range 1400 to 1425GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1425 to 1450GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1450 to 1475GeV.
None
CHARGED HADRON MEASUREMENTS ARE TAKEN FROM R.A. PERCHANOK, PHD THESIS, CORNELL UNIVERSITY (1983).
CHARGED HADRON MEASUREMENTS ARE TAKEN FROM G.J. RUCINSKI, PHD THESIS, CORNELL UNIVERSITY (1983).