Measurements of the total and differential cross sections with respect to transverse momentum and rapidity for B+ mesons produced in pp collisions at sqrt(s) = 7 TeV are presented. The data correspond to an integrated luminosity of 5.8 inverse picobarns collected by the CMS experiment operating at the LHC. The exclusive decay B+ to J/psi K+, with the J/psi decaying to an oppositely charged muon pair, is used to detect B+ mesons and to measure the production cross section as a function of the transverse momentum and rapidity of the B. The total cross section for p_t(B) > 5 GeV and |y(B)| < 2.4 is measured to be 28.1 +/- 2.4 +/- 2.0 +/- 3.1 microbarns, where the first uncertainty is statistical, the second is systematic, and the last is from the luminosity measurement.
Total integrated cross section in the given kinematic range. The (sys) error includes the uncertainty in the branching fraction.
Measured differential cross section as a function of the transverse momentum of the B+ particle.
Measured differential cross section as a function of the rapidity of the B+ particle.
We present the first measurements at a hadron collider of differential cross sections for Z+jet+X production in delta phi(Z, jet), |delta y(Z, jet)| and |y_boost(Z, jet)|. Vector boson production in association with jets is an excellent probe of QCD and constitutes the main background to many small cross section processes, such as associated Higgs production. These measurements are crucial tests of the predictions of perturbative QCD and current event generators, which have varied success in describing the data. Using these measurements as inputs in tuning event generators will increase the experimental sensitivity to rare signals.
Differential cross section in bins of PHI(P=3)-PHI(P=4) for Z/GAMMA* transverse momentum > 25 GeV.
Differential cross section in bins of PHI(P=3)-PHI(P=4) for Z/GAMMA* transverse momentum > 45 GeV.
Differential cross section in bins of ABS(YRAP(P=3)-YRAP(P=4)) for Z/GAMMA* transverse momentum > 25 GeV.
We present the first measurement of dijet angular distributions in ppbar collisions at sqrt{s}=1.96TeV at the Fermilab Tevatron Collider. The measurement is based on a dataset corresponding to an integrated luminosity of up to 0.7fb-1 collected with the D0 detector. Dijet angular distributions have been measured over a range of dijet masses, from 0.25TeV to above 1.1TeV. The data are in good agreement with the predictions of perturbative QCD and are used to constrain new physics models including quark compositeness, large extra dimensions, and TeV-1 scale extra dimensions. For all models we set the most stringent direct limits to date.
Normalized differential distribution in CHI(dijet) for two-jet mass 250 to 300 GeV and the non perturbative correction factor.
Normalized differential distribution in CHI(dijet) for two-jet mass 300 to 400 GeV and the non perturbative correction factor.
Normalized differential distribution in CHI(dijet) for two-jet mass 400 to 500 GeV and the non perturbative correction factor.
We present new measurements of differential cross sections for Z/gamma*(->mumu)+jet+X production in a 1 fb-1 data sample collected with the D0 detector in proton anti-proton collisions at sqrt{s}=1.96 TeV. Results include the first measurements differential in the Z/gamma* transverse momentum and rapidity, as well as new measurements differential in the leading jet transverse momentum and rapidity. Next-to-leading order perturbative QCD predictions are compared to the measurements, and reasonable agreement is observed, except in the region of low Z/gamma* transverse momentum. Predictions from two event generators based on matrix elements and parton showers, and one pure parton shower event generator are also compared to the measurements. These show significant overall normalization differences to the data and have varied success in describing the shape of the distributions.
Measured cross section as a function of the jet transverse momentum.
Measured cross section as a function of the jet rapidity.
Measured cross section as a function of the Z0 transverse momentum.
We present a measurement of the shape of the boson rapidity distribution for $p\bar{p}\to Z / \gamma^* \to e^+e^- + X$ events at a center-of-mass energy of 1.96 TeV. The measurement is made for events with electron-positron mass 71 < M_ee < 111 GeV and uses 0.4 $fb^{-1}$ of data collected at the Fermilab Tevatron collider with the D0 detector. This measurement significantly reduces the uncertainties on the rapidity distribution in the forward region compared with previous measurements. Predictions of NNLO QCD are found to agree well with the data over the full rapidity range.
Normalized rapidity distribution.
Details of systematic errors.
An analysis of the production of the Λ baryon in the hadronic decays of the Z 0 is presented, based on about 993K multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. The differencial cross section of the Λ and the correlations between Λ and Λ produced in the same event are compared to current models, based both on string fragmentation and on cluster decay. The predictions of the string fragmentation model are found to give satisfactory agreements with the data, clearly better than those of the cluster model.
No description provided.
Combined LAMBDA and LAMBDABAR multiplicity.
Errors contain systematic uncertainties.