In this Report, QCD results obtained from a study of hadronic event structure in high energy e^+e^- interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 GeV to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, \alpha_s, from hadronic event shapes and the study of effects of soft gluon coherence through charged particle multiplicity and momentum distributions.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 130.1 GeV.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 136.1 GeV.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 161.3 GeV.
We report on measurements of hadronic and leptonic cross sections and leptonic forward-backward asymmetries performed with the L3 detector in the years 1993-95. A total luminosity of 103 pb^-1 was collected at centre-of-mass energies \sqrt{s} ~ m_Z and \sqrt{s} ~ m_Z +/- 1.8 GeV which corresponds to 2.5 million hadronic and 245 thousand leptonic events selected. These data lead to a significantly improved determination of Z parameters. From the total cross sections, combined with our measurements in 1990-92, we obtain the final results: m_Z = 91189.8 +/- 3.1 MeV, Gamma_Z = 2502.4 +/- 4.2 MeV, Gamma_had = 1741.1 +/- 3.8 MeV, Gamma_l = 84.14 +/- 0.17 MeV. An invisible width of Gamma_inv = 499.1 +/- 2.9 MeV is derived which in the Standard Model yields for the number of light neutrino species N_nu = 2.978 +/- 0.014. Adding our results on the leptonic forward-backward asymmetries and the tau polarisation, the effective vector and axial-vector coupling constants of the neutral weak current to charged leptons are determined to be \bar{g}_V^l = -0.0397 +/- 0.0017 and \bar{g}_A^l = -0.50153 +/- 0.00053.Including our measurements of the Z -> b \bar{b} forward-backward and quark charge asymmetries a value for the effective electroweak mixing angle of sin^2\bar{\theta}_W = 0.23093 +/- 0.00066 is derived. All these measurements are in good agreement with the Standard Model of electroweak interactions. Using all our measurements of electroweak observables an upper limit on the mass of the Standard Model Higgs boson of m_H < 133 GeV is set at 95% confidence level.
Updated values of coupling constants and electroweak mixing angle.
Cross sections for hadron production from the 1993 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.105 PCT.
Cross sections for hadron production from the 1994 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.088 PCT.
We have measured the total inelastic cross section (σinel) and charged-particle multiplicities obtained in pp collisions at 405 GeV/c. The data are from a preliminary 12 000-picture bubble-chamber exposure. We find σinel=32.8±1.0 mb; the low moments of the multiplicity distribution for negative particles are 〈n−〉=3.50±0.07, D−=2.37±0.05, f2−=2.1±0.2, and f3−=0.1±0.9. We also present updated results at 102 GeV/c.
SUPERCEDES PRELIMINARY RESULTS IN J. W. CHAPMAN ET AL., PRL 29, 1686 (1972).
No description provided.
FIT TO ELASTIC DIFFERENTIAL CROSS SECTION FOR 0.05 < -T < 0.7 GEV**2.
We have examined the inclusive production of nonstrange particle resonances in νp interactions using the Fermilab 15-ft bubble chamber. A sample of 2437 charged-current events with visible longitudinal momentum greater than 10 GeV/c was obtained. The ρ0 and Δ++(1232) are seen. An overall rate of 0.21±0.04 ρ0 per event is found. For five-prong events, the rate is 0.44±0.08 ρ0 per event. The ρ0Z distribution falls rapidly for Z greater than 0.4. The production of Δ++ is seen clearly in events with an identified proton. No evidence is seen for Δ0 production. An upper limit of 0.34 is placed on the ratio of ηπ0 (90% confidence level).
NO CLEAR DEL0 SIGNAL.
We present preliminary results from a sample of ∼ 1200 events obtained from an exposure of the 30-in. Argonne National Laboratory—National Accelerator Laboratory liquid-hydrogen bubble chamber to 102-GeVc protons. The elastic and total inelastic cross sections are respectively 6.9 ± 1.0 and 32.8 ± 1.1 mb. The parameters of the multiplicity distribution for negative tracks are 〈n−〉=2.17±0.07, D−2=〈n−2〉−〈n−〉2=2.56±0.12, and f2−=D−2−〈n−〉=0.39±0.10.
No description provided.
The following reactions have been analyzed: (1) p¯p→π−π−π+π+; (2) p¯p→π−π+K−K+; (3) p¯p→K−K−K+K+. Cross sections as a function of beam momentum ranging from 1.6 to 2.2 GeVc are presented. The percentage of resonance production in reaction (1) is examined using the maximum-likelihood (ML) method. The channel is dominated by ρππ and ρf production. The percentage of ρf decreases with p¯ momentum, while ρππ appears to increase. ML fits are also made to reaction (2); the reaction is dominated by K*Kπ, ϕππ, and ρKK production. An enhancement is seen in the Q region of the ππK mass spectrum at 1278 MeV, with FWHM (full width at half maximum) of 25 MeV. Six events are consistent with reaction (3). Mass spectra indicate that five events have at least one ϕ meson produced; one of these is a ϕϕ event.
NORMALIZED TO KNOWN TOTAL CROSS SECTION.
'FIT 9'. ENERGY DEPENDENCE AND EFFECT OF BOSE-EINSTEIN STATISTICS ALSO STUDIED.
'FIT F'.
We report on a study of the inclusive production properties of DD¯ mesons in pp collisions at 800 GeV/c and compare our results to measurements made at lower energies and to the expectations of the QCD fusion model.
No description provided.
No description provided.
No description provided.
The structure of hadronic events fromZ0 decay is studied by measuring event shape variables, factorial moments, and the energy flow distribution. The distributions, after correction for detector effects and initial and final state radiation, are compared with the predictions of different QCD Monte Carlo programs with optimized parameter values. These Monte Carlo programs use either the second order matrix element or the parton shower evolution for the perturbative QCD calculations and use the string, the cluster, or the independent fragmentation model for hadronization. Both parton shower andO(α2s matrix element based models with string fragmentation describe the data well. The predictions of the model based on parton shower and cluster fragmentation are also in good agreement with the data. The model with independent fragmentation gives a poor description of the energy flow distribution. The predicted energy evolutions for the mean values of thrust, sphericity, aplanarity, and charge multiplicity are compared with the data measured at different center-of-mass energies. The parton shower based models with string or cluster fragmentation are found to describe the energy dependences well while the model based on theO(α2s calculation fails to reproduce the energy dependences of these mean values.
Unfolded Thrust distribution. Statistical error includes statistical uncertainties of the data as well as of the unfolding Monte Carlo Sample. The systematic error combines the uncertainties of measurements and of the unfolding procedure.
Unfolded Major distribution where Major is defined in the same way as Thrust but is maximized in a plane perpendicular to the Thrust axis.
Unfolded Minor distribution where the minor axis is defined to give an orthonormal system.
From the measured ratio of the invisible and the leptonic decay widths of theZ0, we determine the number of light neutrino species to beNv=3.05±0.10. We include our measurements of the forward-backward asymmetry for the leptonic channels in a fit to determine the vector and axial-vector neutral current coupling constants of charged leptons to theZ0. We obtain\(\bar g_V=- 0.046_{ - 0.012}^{ + 0.015}\) and\(\bar g_A=- 0.500 \pm 0.003\). In the framework of the Standard Model, we estimate the top quark mass to bemt=193−69+52±16 (Higgs) GeV, and we derive a value for the weak mixing angle of sin2θW=1−(MW/MZ)2=0.222 ± 0.008, corresponding to an effective weak mixing angle of\(\sin ^2 \bar \theta _W= 0.2315\pm0.0025\).
Additional systematic uncertainty of 0.4 pct.
Acceptance corrected cross section for cos(theta)<0.8 and for extrapolation to full solid angle. Additional systematic uncertainty of 0.8 pct.
Acceptance corrected cross section for cos(theta)<0.7 and for extrapolation to full solid angle. Additional systematic uncertainty of 2.1 pct.
We have measured the ratio of the strong coupling constants α s for bottom quarks and light quarks at the Z 0 resonance, in order to test the flavour independence of the strong interaction. The coupling strength α s has been determined from the fraction of events with three jets, measured for a sample of all hardronic events, and for inclusive muon and electron events. The b purity is evaluated to be 22% for the first data set and 87% for the inclusive lepton sample. We find α s ( b ) α s ( udsc ) =1.00± 0.05 ( stat. )±0.06 ( syst. ) .
No description provided.