The polarizations of prompt and non-prompt J$/\psi$ and $\psi$(2S) mesons are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV, using data samples collected by the CMS experiment in 2017 and 2018, corresponding to a total integrated luminosity of 103.3 fb$^{-1}$. Based on the analysis of the dimuon decay angular distributions in the helicity frame, the polar anisotropy, $\lambda_\theta$, is measured as a function of the transverse momentum, $p_\mathrm{T}$, of the charmonium states, in the 25-120 and 20-100 GeV ranges for the J$/\psi$ and $\psi$(2S), respectively. The non-prompt polarizations agree with predictions based on the hypothesis that, for $p_\mathrm{T}$$\gtrsim$ 25 GeV, the non-prompt J$/\psi$ and $\psi$(2S) are predominantly produced in two-body B meson decays. The prompt results clearly exclude strong transverse polarizations, even for $p_\mathrm{T}$ exceeding 30 times the J$/\psi$ mass, where $\lambda_\theta$ tends to an asymptotic value around 0.3. Taken together with previous measurements, by CMS and LHCb at $\sqrt{s}$ = 7 TeV, the prompt polarizations show a significant variation with $p_\mathrm{T}$, at low $p_\mathrm{T}$.
prompt $\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi$ $\lambda_\theta$
non prompt $\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi$ $\lambda_\theta$
prompt $\psi(2S)$ $\lambda_\theta$
A search is presented for heavy bosons decaying to Z($\nu\bar{\nu}$)V(qq'), where V can be a W or a Z boson. A sample of proton-proton collision data at $\sqrt{s} =$ 13 TeV was collected by the CMS experiment during 2016-2018. The data correspond to an integrated luminosity of 137 fb$^{-1}$. The event categorization is based on the presence of high-momentum jets in the forward region to identify production through weak vector boson fusion. Additional categorization uses jet substructure techniques and the presence of large missing transverse momentum to identify W and Z bosons decaying to quarks and neutrinos, respectively. The dominant standard model backgrounds are estimated using data taken from control regions. The results are interpreted in terms of radion, W' boson, and graviton models, under the assumption that these bosons are produced via gluon-gluon fusion, Drell-Yan, or weak vector boson fusion processes. No evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on various types of hypothetical new bosons. Observed (expected) exclusion limits on the masses of these bosons range from 1.2 to 4.0 (1.1 to 3.7) TeV.
Simulated distributions are shown for the cosine of the decay angle of SM vector bosons in the rest frame of a parent particle with a mass (mX) of 2\TeV. Solid lines represent VBF scenarios. Dashed lines represent ggF/DY scenarios.
Distributions of mT for ggF/DY-produced resonances X of mass 4.5 TeV.
Distributions of mT for VBF-produced resonances X of mass 4.5 TeV.
Angular distributions of the decay B$^+$$\to$ K$^*$(892)$^+\mu^+\mu^-$ are studied using events collected with the CMS detector in $\sqrt{s} =$ 8 TeV proton-proton collisions at the LHC, corresponding to an integrated luminosity of 20.0 fb$^{-1}$. The forward-backward asymmetry of the muons and the longitudinal polarization of the K$^*$(892)$^+$ meson are determined as a function of the square of the dimuon invariant mass. These are the first results from this exclusive decay mode and are in agreement with a standard model prediction.
The measured signal yields, FL, AFB in bins of the dimuon invariant mass squared. The first uncertainty is statistical and the second is systematic.
The first measurements of production cross sections of polarized same-sign W$^\pm$W$^\pm$ boson pairs in proton-proton collisions are reported. The measurements are based on a data sample collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$. Events are selected by requiring exactly two same-sign leptons, electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass to enhance the contribution of same-sign W$^\pm$W$^\pm$ scattering events. An observed (expected) 95% confidence level upper limit of 1.17 (0.88) fb is set on the production cross section for longitudinally polarized same-sign W$^\pm$W$^\pm$ boson pairs. The electroweak production of same-sign W$^\pm$W$^\pm$ boson pairs with at least one of the W bosons longitudinally polarized is measured with an observed (expected) significance of 2.3 (3.1) standard deviations.
Systematic uncertainties of the $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{L}}$ and $\mathrm{W}^\pm_{\mathrm{X}}\mathrm{W}^\pm_{\mathrm{T}}$, and $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{X}}$ and $\mathrm{W}^\pm_{\mathrm{T}}\mathrm{W}^\pm_{\mathrm{T}}$ cross section measurements in units of percent.
Expected yields from various SM processes and observed data events in WW SR. The combination of the statistical and systematic uncertainties is shown. The expected yields are shown with their best fit normalizations from the simultaneous fit for the $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{L}}$ and $\mathrm{W}^\pm_{\mathrm{X}}\mathrm{W}^\pm_{\mathrm{T}}$ cross sections. The $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{T}}$ and $\mathrm{W}^\pm_{\mathrm{T}}\mathrm{W}^\pm_{\mathrm{T}}$ yields are obtained from the $\mathrm{W}^\pm_{\mathrm{X}}\mathrm{W}^\pm_{\mathrm{T}}$ yield assuming the SM prediction for the ratio of the yields. The tVx background yield includes the contributions from tt$\mathrm{V}$ and tZq processes.
Measured fiducial cross sections for the $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{L}}$ and $\mathrm{W}^\pm_{\mathrm{X}}\mathrm{W}^\pm_{\mathrm{T}}$ processes, and for the $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{X}}$ and $\mathrm{W}^\pm_{\mathrm{T}}\mathrm{W}^\pm_{\mathrm{T}}$ processes for the helicity eigenstates defined in the WW center-of-mass frame. The combination of the statistical and systematic uncertainties is shown. $\mathcal{B}$ is the branching fraction for $\mathrm{W}\mathrm{W} \rightarrow \ell \nu \ell' \nu$. The fiducial region is defined by requiring two same-sign leptons with $p_{T}>20$, $|\eta|<2.5$, and $m_{ll}>20$, and two jets with $m_{jj}>500$ and $|\Delta \eta_{jj}|>2.5$. The jets at generator level are clustered from stable particles, excluding neutrinos, using the anti-kt clustering algorithm with R = 0.4, and are required to have $p_{T}>50$ and $|\eta|<4.7$. The jets within $\Delta R<0.4$ of the selected charged leptons are not included. The theoretical predictions including the $\mathcal{O}(\alpha_{s}\alpha^6)$ and $\mathcal{O}(\alpha^7)$ corrections to the \MGvATNLO LO cross sections, as described in arXiv:2009.09429, are also shown. The theoretical uncertainties include statistical, PDF, and LO scale uncertainties.
A measurement is presented of differential cross sections for $t$-channel single top quark and antiquark production in proton-proton collisions at a centre-of-mass energy of 13 TeV by the CMS experiment at the LHC. From a data set corresponding to an integrated luminosity of 35.9 fb$^{-1}$, events containing one muon or electron and two or three jets are analysed. The cross section is measured as a function of the top quark transverse momentum ($p_\mathrm{T}$), rapidity, and polarisation angle, the charged lepton $p_\mathrm{T}$ and rapidity, and the $p_\mathrm{T}$ of the W boson from the top quark decay. In addition, the charge ratio is measured differentially as a function of the top quark, charged lepton, and W boson kinematic observables. The results are found to be in agreement with standard model predictions using various next-to-leading-order event generators and sets of parton distribution functions. Additionally, the spin asymmetry, sensitive to the top quark polarisation, is determined from the differential distribution of the polarisation angle at parton level to be 0.440 $\pm$ 0.070, in agreement with the standard model prediction.
Differential absolute cross section as a function of the parton-level top quark $p_\textrm{T}$
Covariance of the differential absolute cross section as a function of the parton-level top quark $p_\textrm{T}$
Differential absolute cross section as a function of the parton-level top quark rapidity
Measurements have been made of the asymmetry in the scattering of π− mesons by a polarized proton target. Scattered π mesons and recoil protons were detected in arrays of scintillation counters; data were obtained at 16 scattering angles at each of 8 beam momenta between 875 and 1578 MeV/c. Analysis of these data together with earlier differential-cross-section measurements shows that there must exist at least three resonances in this energy region: (i) mass 1920 MeV/c2, Γ=170 MeV/c2, I=32, F72; (ii) mass 1682 MeV/c2, Γ=100 MeV/c2, I=12, F52; and (iii) mass 1674 MeV/c2, Γ=100 MeV/c2, I=12, D52.
No description provided.
No description provided.
No description provided.
We present the most accurate and complete data set for the analyzing power Ay(theta) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at En = 12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model study.
The measured analysing power at 12 MeV. Errors contain statistics and systematics added in quadrature.
We present new accurate measurements of the differential cross section $\sigma(\theta)$ and the proton analyzing power $A_{y}$ for proton-$^{3}$He elastic scattering at various energies. A supersonic gas jet target has been employed to obtain these low energy cross section measurements. The $\sigma(\theta)$ distributions have been measured at $E_{p}$ = 0.99, 1.59, 2.24, 3.11, and 4.02 MeV. Full angular distributions of $A_{y}$ have been measured at $E_{p}$ = 1.60, 2.25, 3.13, and 4.05 MeV. This set of high-precision data is compared to four-body variational calculations employing realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions. For the unpolarized cross section the agreement between the theoretical calculation and data is good when a $3N$ potential is used. The comparison between the calculated and measured proton analyzing powers reveals discrepancies of approximately 50% at the maximum of each distribution. This is analogous to the existing ``$A_{y}$ Puzzle'' known for the past 20 years in nucleon-deuteron elastic scattering.
The measured P-HE3 elastic differential cross section at proton energy 0.99MeV.
The measured P-HE3 elastic differential cross section at proton energy 1.59MeV.
The measured P-HE3 elastic differential cross section at proton energy 2.24MeV.
Measurements of the tau lepton polarization and forward-backward polarization asymmetry near the Z resonance using the OPAL detector are described. The measurements are based on analyses of tau -> e nu_e nu_tau, tau -> mu nu_mu nu_tau, tau -> pi nu_tau, tau -> rho nu_tau and tau -> a1 nu_tau decays from a sample of 144810 e+e- -> tau+ tau- candidates corresponding to an integrated luminosity of 151 pb-1. Assuming that the tau lepton decays according to V-A theory, we measure the average tau polarization near Ecm = MZ to be <Ptau> = (-14.10 +/- 0.73 +/- 0.55)% and the tau polarization forward-backward asymmetry to be Afb = (-10.55 +/- 0.76 +/- 0.25)%, where the first error is statistical and the second systematic. Taking into account the small effects of the photon propagator, photon-Z interference and photonic radiative corrections, these results can be expressed in terms of the lepton neutral current asymmetry parameters: Atau = 0.1456 +/- 0.0076 +/- 0.0057, Ae = 0.1454 +/- 0.0108 +/- 0.0036. These measurements are consistent with the hypothesis of lepton universality and combine to give Al = 0.1455 +/- 0.0073. Within the context of the Standard Model this combined result corresponds to sin^2(theta)(lept,effective) = 0.23172 +/- 0.00092. Combing these results with those from the other OPAL neutral current measurements yields a value of sin^2(theta)(lept,effective) = 0.23211 +/- 0.00068.
No description provided.
In the Standard Model, b quarks produced in e^+e^- annihilation at the Z^0 peak have a large average longitudinal polarization of -0.94. Some fraction of this polarization is expected to be transferred to b-flavored baryons during hadronization. The average longitudinal polarization of weakly decaying b baryons, <P_L^{\Lambda_b}>, is measured in approximately 4.3 million hadronic Z^0 decays collected with the OPAL detector between 1990 and 1995 at LEP. Those b baryons that decay semileptonically and produce a \Lambda baryon are identified through the correlation of the baryon number of the \Lambda and the electric charge of the lepton. In this semileptonic decay, the ratio of the neutrino energy to the lepton energy is a sensitive polarization observable. The neutrino energy is estimated using missing energy measurements. From a fit to the distribution of this ratio, the value <P_L^{\Lambda_b}> = -0.56^{+0.20}_{-0.13} +/- 0.09 is obtained, where the first error is statistical and the second systematic.
Charge conjugate states are included.