We report precision measurements of the Feynman-x dependence, and first measurements of the transverse momentum dependence, of transverse single spin asymmetries for the production of \pi^0 mesons from polarized proton collisions at \sqrt{s}=200 GeV. The x_F dependence of the results are in fair agreement with perturbative QCD model calculations that identify orbital motion of quarks and gluons within the proton as the origin of the spin effects. Results for the p_T dependence at fixed x_F are not consistent with pQCD-based calculations.
Analyzing powers A_N(x_F) in x_F bins at < eta > =3.7 and x_F > 0.
Analyzing powers A_N(x_F) in x_F bins at < eta > =3.3 and x_F > 0.
Analyzing powers A_N(-x_F) in x_F bins at < eta > =3.7 and x_F < 0.
We present a measurement of the shape of the Z/gamma* boson transverse momentum (qT) distribution in ppbar -> Z/gamma* -> ee+X events at a center-of-mass energy of 1.96 TeV using 0.98 fb-1 of data collected with the D0 detector at the Fermilab Tevatron collider. The data are found to be consistent with the resummation prediction at low qT, but above the perturbative QCD calculation in the region of qT>30 GeV/c. Using events with qT<30 GeV/c, we extract the value of g2, one of the non-perturbative parameters for the resummation calculation. Data at large boson rapidity y are compared with the prediction of resummation and with alternative models that employ a resummed form factor with modifications in the small Bjorken x region of the proton wave function.
Normalized differential transverse momentum spectrum for Z0/GAMMA* events.
Correlation matrix for all rapidity Z bosons for the 12 bins used for PT < 30.
Normalized differential transverse momentum spectrum for Z0/GAMMA* events for the absolute rapidity region > 2 and PT < 30 GeV.
Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR collaboration presents a measurement of rho^0 and direct pi^+pi^- photoproduction in ultra-peripheral relativistic heavy ion collisions at sqrt(s_{NN})=200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross-section of sigma(AuAu) -> Au^*Au^*rho^0 = 530 pm 19 (stat.) pm 57 (syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The rho^0 transverse momentum spectrum (p_{T}^2) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus/ we find sigma_{inc}/sigma_{coh} = 0.29 pm 0.03 (stat.) pm 0.08 (syst.). The ratio of direct pi^+pi^- to rho^0 production is comparable to that observed in gamma p collisions at HERA, and appears to be independent of photon energy. Finally, the measured rho^0 spin helicity matrix elements agree within errors with the expected s-channel helicity conservation.
ZDC spectra obtained with the minimum bias sample after the $\rho^{0}$ selection cuts are applied, and fit with three Gaussians. The east ZDC is shown on the left and the west ZDC is shown on the right. The ratio of numbers of candidates in the West ZDC of 1n:2n:3n is 1: 0.48 $\pm$ 0.03: 0.42 $\pm$ 0.03, while in the East ZDC, we find 1n:2n:3n is 1: 0.46 $\pm$ 0.03: 0.42 $\pm$ 0.03.
ZDC spectra obtained with the minimum bias sample after the $\rho^{0}$ selection cuts are applied, and fit with three Gaussians. The east ZDC is shown on the left and the west ZDC is shown on the right. The ratio of numbers of candidates in the West ZDC of 1n:2n:3n is 1: 0.48 $\pm$ 0.03: 0.42 $\pm$ 0.03, while in the East ZDC, we find 1n:2n:3n is 1: 0.46 $\pm$ 0.03: 0.42 $\pm$ 0.03.
The invariant mass distribution for the coherently produced $\rho^{0}$ candidates from the minimum bias sample with the cut on the $\rho^{0}$ transverse momentum $p_{T}$ < 150 MeV/c. The hatched area is the contribution from the combinatorial background. The solid line corresponds to Eq. 3 which encompasses the Breit-Wigner (dashed), the mass independent contribution from the direct $\pi^{+}\pi^{-}$ production (dash-dotted), and the interference term(dotted).
We present the first model-independent measurement of the helicity of $W$ bosons produced in top quark decays, based on a 1 fb$^{-1}$ sample of candidate $t\bar{t}$ events in the dilepton and lepton plus jets channels collected by the D0 detector at the Fermilab Tevatron $p\bar{p}$ Collider. We reconstruct the angle $\theta^*$ between the momenta of the down-type fermion and the top quark in the $W$ boson rest frame for each top quark decay. A fit of the resulting \costheta distribution finds that the fraction of longitudinal $W$ bosons $f_0 = 0.425 \pm 0.166 \hbox{(stat.)} \pm 0.102 \hbox{(syst.)}$ and the fraction of right-handed $W$ bosons $f_+ = 0.119 \pm 0.090 \hbox{(stat.)} \pm 0.053 \hbox{(syst.)}$, which is consistent at the 30% C.L. with the standard model.
COS(THETA*) distribution for leptonic W decay in lepton+jets events.. Data are read from plots and errors are statistcial (sqrt(N)).
COS(THETA*) distribution for hadronic W decay in lepton+jets events.. Data are read from plots and errors are statistcial (sqrt(N)).
COS(THETA*) distribution for W decay in dilepton events.. Data are read from plots and errors are statistcial (sqrt(N)).
This paper reports measurements of processes: e+e- -> gamma KsK+pi-, e+e- -> gamma K+K-pi0, e+e- -> gamma phi eta, and e+e- -> gamma phi pi0. The initial state radiated photon allows to cover the hadronic final state in the energy range from thresholds up to ~4.6 GeV. The overall size of the data sample analyzed is 232 fb-1, collected by the BaBar detector running at the PEP-II e+e- storage ring. From the Dalitz plot analysis of the KsK+pi- final state, moduli and relative phase of the isoscalar and the isovector components of the e+e- -> K K*(892) cross section are determined. Parameters of phi and rho recurrences are also measured, using a global fitting procedure which exploits the interconnection among amplitudes, moduli and phases of the e+e- -> KsK+pi-, K+K-pi0, phi eta final states. The cross section for the OZI-forbidden process e+e- -> phi pi0, and the J/psi branching fractions to KK*(892) and K+K-eta are also measured.
The cross section for E+ E- --> K0S K+ PI- + CC with statistical errors only.
The cross section for E+ E- --> K+ K- PI0 with statistical errors only.
The cross section for E+ E- --> PHI PI0 with statistical errors only.
We present measurements of the process $p\bar{p} \to WZ+X \to \ell^{\prime} \nu_{\ell^{\prime}} \ell \bar{\ell}$ at $\sqrt{s}=1.96$ TeV, where $\ell$ and $\ell^{\prime}$ are electrons or muons. Using 1 fb$^{-1}$ of data from the D0 experiment, we observe 13 candidates with an expected background of $4.5\pm0.6$ events and measure a cross section $\sigma(WZ)=2.7^{+1.7}_{-1.3}$ pb. From the number of observed events and the $Z$ boson transverse momentum distribution, we limit the trilinear $WWZ$ gauge couplings to $-0.17 \le \lambda_Z \le 0.21$ $(\Delta \kappa_Z = 0)$ at the 95% C.L. for a form factor scale $\Lambda=2$ TeV. Further, assuming that $\Delta g^Z_1 = \Delta\kappa_Z$, we find $-0.12 \le \Delta\kappa_Z \le 0.29$ $(\lambda_Z=0)$ at the 95% C.L. These are the most restrictive limits on the $WWZ$ couplings available to date.
Measured WZ cross section.
From a total data sample of 701.1 pb^-1 recorded with e+e- centre-of-mass energies of sqrt = 161-209 GeV with the OPAL detector at LEP, 11693 W-pair candidate events are selected. These data are used to obtain measurements of the W-pair production cross sections at 10 different centre-of-mass energies. The ratio of the measured cross sections to the Standard Model expectation is found to be: data/SM = 1.002 +- 0.011(stat.) +- 0.007(syst.) +- 0.005(theory), where the uncertainties are statistical, experimental systematics and theory systematics respectively. The data are used to determine the W boson branching fractions, which are found to be consistent with lepton universality of the charged current interaction. Assuming lepton universality, the branching ratio to hadrons is determined to be 67.41 +- 0.37(stat.) +- 0.23(syst.)%, from which the CKM matrix element Vcs is determined to be 0.96+-0.017(stat.)+-0.012(syst.). The differential cross section as a function of the W^- production angle is measured for the qqev and qqmv final states. The results described in this paper are consistent with the expectations from the Standard Model.
Measured cross section for the (lepton nu lepton nu) decay mode.
Measured cross section for the (quark quark lepton nu) decay mode.
Measured cross section for the (quark quark quark quark) decay mode.
We study the processes $e^+ e^-\to 2(\pi^+\pi^-)\pi^0\gamma$, $2(\pi^+\pi^-)\eta\gamma$, $K^+ K^-\pi^+\pi^-\pi^0\gamma$ and $K^+ K^-\pi^+\pi^-\eta\gamma$ with the hard photon radiated from the initial state. About 20000, 4300, 5500 and 375 fully reconstructed events, respectively, are selected from 232 fb$^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective $e^+ e^-$ center-of-mass energy, so that the obtained cross sections from the threshold to about 5 GeV can be compared with corresponding direct \epem measurements, currently available only for the $\eta\pi^+\pi^-$ and $\omega\pi^+\pi^-$ submodes of the $e^+ e^-\to 2(\pi^+\pi^-)\pi^0$ channel. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-\to\omega(782)\pi^+\pi^-$ and study the $\omega(1420)$ and $\omega(1650)$ resonances. In the charmonium region, we observe the $J/\psi$ in all these final states and several intermediate states, as well as the $\psi(2S)$ in some modes, and we measure the corresponding branching fractions.
Measured cross section for E+ E- --> 2(PI+ PI-) PI0 with statistical errorsonly.
Measured cross section for E+ E- --> ETA PI+ PI- with statistical errors only.
Measured cross section for E+ E- --> OMEGA PI+ PI- with statistical errors only.
We present a measurement of the ttbar pair production cross section in ppbar collisions at sqrt(s) = 1.96 TeV utilizing approximately 425 pb-1 of data collected with the D0 detector. We consider decay channels containing two high pT charged leptons (either e or \mu) from leptonic decays of both top-daughter W bosons. These were gathered using four sets of selection criteria, three of which required that a pair of fully identified leptons (i.e., e\mu, ee, or \mu\mu) be found. The fourth approach imposed less restrictive criteria on one of the lepton candidates and required that at least one hadronic jet in each event be tagged as containing a b quark. For a top quark mass of 175 GeV, the measured cross section is 7.4 +/-1.4(stat} +/- 1.0(syst) pb.
TOP TOPBAR production cross section for top quark mass 175 GeV.
TOP TOPBAR production cross section for the current Tevatron average top quark mass 170.9 GeV.. Error contains both statistics and systematics.
We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV utilizing 425 pb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider. We consider the final state of the top quark pair containing one high-pT electron or muon and at least four jets. We exploit specific kinematic features of ttbar events to extract the cross section. For a top quark mass of 175 GeV, we measure sigma_ttbar = 6.4 +1.3-1.2(stat} +/- 0.7(syst)+/- 0.4(lum) pb in good agreement with the standard model prediction.
TOP TOPBAR production cross section.