This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.
- - - - - - - - - - - - - - - - - - - - <br><b>charged-hadron spectra:</b> <br><i>pp reference:</i> <a href="?version=1&table=Table1">for p+Pb</a> <a href="?version=1&table=Table10">for Pb+Pb</a> <a href="?version=1&table=Table19">for Xe+Xe</a> <br><i>p+Pb:</i> <a href="?version=1&table=Table2">0-5%</a> <a href="?version=1&table=Table3">5-10%</a> <a href="?version=1&table=Table4">10-20%</a> <a href="?version=1&table=Table5">20-30%</a> <a href="?version=1&table=Table6">30-40%</a> <a href="?version=1&table=Table7">40-60%</a> <a href="?version=1&table=Table8">60-90%</a> <a href="?version=1&table=Table9">0-90%</a> <br><i>Pb+Pb:</i> <a href="?version=1&table=Table11">0-5%</a> <a href="?version=1&table=Table12">5-10%</a> <a href="?version=1&table=Table13">10-20%</a> <a href="?version=1&table=Table14">20-30%</a> <a href="?version=1&table=Table15">30-40%</a> <a href="?version=1&table=Table16">40-50%</a> <a href="?version=1&table=Table17">50-60%</a> <a href="?version=1&table=Table18">60-80%</a> <br><i>Xe+Xe:</i> <a href="?version=1&table=Table20">0-5%</a> <a href="?version=1&table=Table21">5-10%</a> <a href="?version=1&table=Table22">10-20%</a> <a href="?version=1&table=Table23">20-30%</a> <a href="?version=1&table=Table24">30-40%</a> <a href="?version=1&table=Table25">40-50%</a> <a href="?version=1&table=Table26">50-60%</a> <a href="?version=1&table=Table27">60-80%</a> </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (p<sub>T</sub>):</b> <br><i>R<sub>pPb</sub>:</i> <a href="?version=1&table=Table28">0-5%</a> <a href="?version=1&table=Table29">5-10%</a> <a href="?version=1&table=Table30">10-20%</a> <a href="?version=1&table=Table31">20-30%</a> <a href="?version=1&table=Table32">30-40%</a> <a href="?version=1&table=Table33">40-60%</a> <a href="?version=1&table=Table34">60-90%</a> <a href="?version=1&table=Table35">0-90%</a> <br><i>R<sub>AA</sub> (Pb+Pb):</i> <a href="?version=1&table=Table36">0-5%</a> <a href="?version=1&table=Table37">5-10%</a> <a href="?version=1&table=Table38">10-20%</a> <a href="?version=1&table=Table39">20-30%</a> <a href="?version=1&table=Table40">30-40%</a> <a href="?version=1&table=Table41">40-50%</a> <a href="?version=1&table=Table42">50-60%</a> <a href="?version=1&table=Table43">60-80%</a> <br><i>R<sub>AA</sub> (Xe+Xe):</i> <a href="?version=1&table=Table44">0-5%</a> <a href="?version=1&table=Table45">5-10%</a> <a href="?version=1&table=Table46">10-20%</a> <a href="?version=1&table=Table47">20-30%</a> <a href="?version=1&table=Table48">30-40%</a> <a href="?version=1&table=Table49">40-50%</a> <a href="?version=1&table=Table50">50-60%</a> <a href="?version=1&table=Table51">60-80%</a> </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (y*/eta):</b> <br><i>R<sub>pPb</sub>:</i> <br> 0-5%: <a href="?version=1&table=Table52">0.66-0.755GeV</a> <a href="?version=1&table=Table53">2.95-3.35GeV</a> <a href="?version=1&table=Table54">7.65-8.8GeV</a> <a href="?version=1&table=Table55">15.1-17.3GeV</a> <br> 5-10%: <a href="?version=1&table=Table56">0.66-0.755GeV</a> <a href="?version=1&table=Table57">2.95-3.35GeV</a> <a href="?version=1&table=Table58">7.65-8.8GeV</a> <a href="?version=1&table=Table59">15.1-17.3GeV</a> <br> 10-20%: <a href="?version=1&table=Table60">0.66-0.755GeV</a> <a href="?version=1&table=Table61">2.95-3.35GeV</a> <a href="?version=1&table=Table62">7.65-8.8GeV</a> <a href="?version=1&table=Table63">15.1-17.3GeV</a> <br> 20-30%: <a href="?version=1&table=Table64">0.66-0.755GeV</a> <a href="?version=1&table=Table65">2.95-3.35GeV</a> <a href="?version=1&table=Table66">7.65-8.8GeV</a> <a href="?version=1&table=Table67">15.1-17.3GeV</a> <br> 30-40%: <a href="?version=1&table=Table68">0.66-0.755GeV</a> <a href="?version=1&table=Table69">2.95-3.35GeV</a> <a href="?version=1&table=Table70">7.65-8.8GeV</a> <a href="?version=1&table=Table71">15.1-17.3GeV</a> <br> 40-60%: <a href="?version=1&table=Table72">0.66-0.755GeV</a> <a href="?version=1&table=Table73">2.95-3.35GeV</a> <a href="?version=1&table=Table74">7.65-8.8GeV</a> <a href="?version=1&table=Table75">15.1-17.3GeV</a> <br> 60-90%: <a href="?version=1&table=Table76">0.66-0.755GeV</a> <a href="?version=1&table=Table77">2.95-3.35GeV</a> <a href="?version=1&table=Table78">7.65-8.8GeV</a> <a href="?version=1&table=Table79">15.1-17.3GeV</a> <br> 0-90%: <a href="?version=1&table=Table80">0.66-0.755GeV</a> <a href="?version=1&table=Table81">2.95-3.35GeV</a> <a href="?version=1&table=Table82">7.65-8.8GeV</a> <a href="?version=1&table=Table83">15.1-17.3GeV</a> <br><i>R<sub>AA</sub> (Pb+Pb):</i> <br> 0-5%: <a href="?version=1&table=Table84">1.7-1.95GeV</a> <a href="?version=1&table=Table85">6.7-7.65GeV</a> <a href="?version=1&table=Table86">20-23GeV</a> <a href="?version=1&table=Table87">60-95GeV</a> <br> 5-10%: <a href="?version=1&table=Table88">1.7-1.95GeV</a> <a href="?version=1&table=Table89">6.7-7.65GeV</a> <a href="?version=1&table=Table90">20-23GeV</a> <a href="?version=1&table=Table91">60-95GeV</a> <br> 10-20%: <a href="?version=1&table=Table92">1.7-1.95GeV</a> <a href="?version=1&table=Table93">6.7-7.65GeV</a> <a href="?version=1&table=Table94">20-23GeV</a> <a href="?version=1&table=Table95">60-95GeV</a> <br> 20-30%: <a href="?version=1&table=Table96">1.7-1.95GeV</a> <a href="?version=1&table=Table97">6.7-7.65GeV</a> <a href="?version=1&table=Table98">20-23GeV</a> <a href="?version=1&table=Table99">60-95GeV</a> <br> 30-40%: <a href="?version=1&table=Table100">1.7-1.95GeV</a> <a href="?version=1&table=Table101">6.7-7.65GeV</a> <a href="?version=1&table=Table102">20-23GeV</a> <a href="?version=1&table=Table103">60-95GeV</a> <br> 40-50%: <a href="?version=1&table=Table104">1.7-1.95GeV</a> <a href="?version=1&table=Table105">6.7-7.65GeV</a> <a href="?version=1&table=Table106">20-23GeV</a> <a href="?version=1&table=Table107">60-95GeV</a> <br> 50-60%: <a href="?version=1&table=Table108">1.7-1.95GeV</a> <a href="?version=1&table=Table109">6.7-7.65GeV</a> <a href="?version=1&table=Table110">20-23GeV</a> <a href="?version=1&table=Table111">60-95GeV</a> <br> 60-80%: <a href="?version=1&table=Table112">1.7-1.95GeV</a> <a href="?version=1&table=Table113">6.7-7.65GeV</a> <a href="?version=1&table=Table114">20-23GeV</a> <a href="?version=1&table=Table115">60-95GeV</a> <br><i>R<sub>AA</sub> (Xe+Xe):</i> <br> 0-5%: <a href="?version=1&table=Table116">1.7-1.95GeV</a> <a href="?version=1&table=Table117">6.7-7.65GeV</a> <a href="?version=1&table=Table118">20-23GeV</a> <br> 5-10%: <a href="?version=1&table=Table119">1.7-1.95GeV</a> <a href="?version=1&table=Table120">6.7-7.65GeV</a> <a href="?version=1&table=Table121">20-23GeV</a> <br> 10-20%: <a href="?version=1&table=Table122">1.7-1.95GeV</a> <a href="?version=1&table=Table123">6.7-7.65GeV</a> <a href="?version=1&table=Table124">20-23GeV</a> <br> 20-30%: <a href="?version=1&table=Table125">1.7-1.95GeV</a> <a href="?version=1&table=Table126">6.7-7.65GeV</a> <a href="?version=1&table=Table127">20-23GeV</a> <br> 30-40%: <a href="?version=1&table=Table128">1.7-1.95GeV</a> <a href="?version=1&table=Table129">6.7-7.65GeV</a> <a href="?version=1&table=Table130">20-23GeV</a> <br> 40-50%: <a href="?version=1&table=Table131">1.7-1.95GeV</a> <a href="?version=1&table=Table132">6.7-7.65GeV</a> <a href="?version=1&table=Table133">20-23GeV</a> <br> 50-60%: <a href="?version=1&table=Table134">1.7-1.95GeV</a> <a href="?version=1&table=Table135">6.7-7.65GeV</a> <a href="?version=1&table=Table136">20-23GeV</a> <br> 60-80%: <a href="?version=1&table=Table137">1.7-1.95GeV</a> <a href="?version=1&table=Table138">6.7-7.65GeV</a> <a href="?version=1&table=Table139">20-23GeV</a> <br>- - - - - - - - - - - - - - - - - - - -
Charged-hadron cross-section in pp collisions. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 0-5% for p+Pb, divided by 〈TPPB〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
The production of J/$\psi$ and $\psi(2S)$ was measured with the ALICE detector in Pb-Pb collisions at the LHC. The measurement was performed at forward rapidity ($2.5 < y < 4 $) down to zero transverse momentum ($p_{\rm T}$) in the dimuon decay channel. Inclusive J/$\psi$ yields were extracted in different centrality classes and the centrality dependence of the average $p_{\rm T}$ is presented. The J/$\psi$ suppression, quantified with the nuclear modification factor ($R_{\rm AA}$), was studied as a function of centrality, transverse momentum and rapidity. Comparisons with similar measurements at lower collision energy and theoretical models indicate that the J/$\psi$ production is the result of an interplay between color screening and recombination mechanisms in a deconfined partonic medium, or at its hadronization. Results on the $\psi(2S)$ suppression are provided via the ratio of $\psi(2S)$ over J/$\psi$ measured in pp and Pb-Pb collisions.
Values of $\langle p_{\rm T}\rangle$ and $\langle p^2_{\rm T}\rangle$ of inclusive J/$\psi$ measured in $0<p_{\rm T}<8$ GeV/$c$ and $2.5<y<4$. Statistical and systematic uncertainties are also reported.
Inclusive J/$\psi$ yields in $p_{\rm T}$ intervals for the 0-20%, 20-40% and 40-90% most central Pb-Pb collisions. The rapidity range is $2.5<y<4$. Statistical and systematic uncertainties are also reported. A global systematic uncertainty of 4% affects all the values. A 2%, 1% and 2% systematic uncertainty, independent of $p_{\rm T}$, affects the centrality classes 0-20%, 20-40% and 40-90%, respectively.
Inclusive J/$\psi$ $R_{\rm AA}$ and Pb-Pb yields as a function of centrality, $p_{\rm T}<8$ GeV/$c$ and $2.5<y<4.0$. Statistical and systematic uncertainties are also reported. A global systematic uncertainty of 15% (12%) affects all the $R_{\rm AA}$ (yields) values.
The nuclear modification factor, $R_{\rm AA}$, of the prompt charmed mesons ${\rm D^0}$, ${\rm D^+}$ and ${\rm D^{*+}}$, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass energy $\sqrt{s_{\rm NN}} = 2.76$ TeV in two transverse momentum intervals, $5<p_{\rm T}<8$ GeV/$c$ and $8<p_{\rm T}<16$ GeV/$c$, and in six collision centrality classes. The $R_{\rm AA}$ shows a maximum suppression of a factor of 5-6 in the 10% most central collisions. The suppression and its centrality dependence are compatible within uncertainties with those of charged pions. A comparison with the $R_{\rm AA}$ of non-prompt ${\rm J}/\psi$ from B meson decays, measured by the CMS Collaboration, hints at a larger suppression of D mesons in the most central collisions.
${\rm D^+}$ meson $R_{\rm AA}$ in $5 < p_{\rm T} < 8$ GeV/c.
${\rm D^+}$ meson $R_{\rm AA}$ in $8 < p_{\rm T} < 16$ GeV/c.
${\rm D^{*+}}$ meson $R_{\rm AA}$ in $5 < p_{\rm T} < 8$ GeV/c.
The transverse momentum ($p_{\rm T}$) dependence of the nuclear modification factor $R_{\rm AA}$ and the centrality dependence of the average transverse momentum $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ have been measured with ALICE for Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV in the e$^+$e$^-$ decay channel at mid-rapidity ($|y|<0.8$). The $\langle p_{\rm T}\rangle$ is significantly smaller than the one observed for pp collisions at the same centre-of-mass energy. Consistently, an increase of $R_{\rm AA}$ is observed towards low $p_{\rm T}$. These observations might be indicative of a sizable contribution of charm quark coalescence to the J/$\psi$ production. Additionally, the fraction of non-prompt J/$\psi$ from beauty hadron decays, $f_{\rm B}$, has been determined in the region $1.5 < p_{\rm T} < 10$ GeV/c in three centrality intervals. No significant centrality dependence of $f_{\rm B}$ is observed. Finally, the $R_{\rm AA}$ of non-prompt J/$\psi$ is discussed and compared with model predictions. The nuclear modification in the region $4.5 < p_{\rm T} < 10$ GeV/c is found to be stronger than predicted by most models.
The average transverse momentum $\langle p_{\rm T} \rangle$ of inclusive J/$\psi$ measured at mid-rapidity in centrality selected Pb-Pb collisions as a function of the number of participants.
The average transverse momentum squared $\langle p_{\rm T}^{2} \rangle$ of inclusive J/$\psi$ measured at mid-rapidity in centrality selected Pb-Pb collisions as a function of the number of participants.
The ratio $\langle p_{\rm T}^{2} \rangle_{\rm AA} / \langle p_{\rm T}^{2} \rangle_{\rm pp}$ of inclusive J/$\psi$ measured at mid-rapidity in centrality selected Pb-Pb collisions as a function of the number of participants.
The transverse momentum ($p_{\rm T}$) spectrum and nuclear modification factor ($R_{\rm AA}$) of reconstructed jets in 0-10% and 10-30% central Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV were measured. Jets were reconstructed from charged and neutral particles, utilizing the ALICE tracking detectors and Electromagnetic Calorimeter (EMCal), with the anti-$k_{\rm T}$ jet algorithm with a resolution parameter of R=0.2. The jet $p_{\rm T}$ spectra are reported in the pseudorapidity interval of $|{\eta}_{\rm jet}|<0.5$ for $40<p_{\rm T,jet}<120$ GeV/$c$ in 0-10% and for $30<p_{\rm T,jet}<100$ GeV/$c$ in 10-30% collisions. Reconstructed jets were required to contain a leading charged particle with $p_{\rm T}>5$ GeV/$c$ to suppress jets constructed from the combinatorial background in Pb-Pb collisions. The effect of the leading charged particle requirement has been studied in both pp and Pb-Pb collisions and has been shown to have negligible effects on the $R_{\rm AA}$ within the uncertainties of the measurement. The nuclear modification factor is obtained by dividing the jet spectrum measured in Pb-Pb by that in pp collisions scaled by the number of independent nucleon-nucleon collisions estimated using a Glauber model. $R_{\rm AA}$ is found to be $0.28\pm0.04$ in 0-10% and $0.35\pm0.04$ in 10-30% collisions, independent of $p_{\rm T,jet}$ within the uncertainties of the measurement. The observed suppression is in fair agreement with expectations from two model calculations with different approaches to jet quenching.
The $\delta{p}_{\mathrm{T}}$ distribution for $R=0.2$ with the random-cone and the embedded-track methods in the 10% most central events, with $p_{\mathrm{T}}^{\mathrm{probe}}=60$ GeV/$c$ for the embedded-track method.
The spectra of $R=0.2$ jets with a leading track requirement of $5$ GeV/$c$ in inelastic pp collisions at $\sqrt{s}=2.76$ TeV.
The spectra of $R=0.2$ jets with a leading track requirement of $5$ GeV/$c$ in 0-10% and 10-30% most central Pb-Pb collisions scaled by 1/$N_{\mathrm{coll}}$ at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV.
We report on the production of inclusive $\Upsilon$(1S) and $\Upsilon$(2S) in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV at the LHC. The measurement is performed with the ALICE detector at backward ($-4.46< y_{{\rm cms}}<-2.96$) and forward ($2.03< y_{{\rm cms}}<3.53$) rapidity down to zero transverse momentum. The production cross sections of the $\Upsilon$(1S) and $\Upsilon$(2S) are presented, as well as the nuclear modification factor and the ratio of the forward to backward yields of $\Upsilon$(1S). A suppression of the inclusive $\Upsilon$(1S) yield in p-Pb collisions with respect to the yield from pp collisions scaled by the number of binary nucleon-nucleon collisions is observed at forward rapidity but not at backward rapidity. The results are compared to theoretical model calculations including nuclear shadowing or partonic energy loss effects.
Inclusive UPSI(1S) production cross section as a function of rapidity in p-Pb collisions at sqrt(s_NN) = 5.02 TeV. The data was collected in 2013 with two beam configurations, p-Pb and Pb-p with integrated luminosities of 5.0 nb-1 and 5.8 nb-1, respectively.
Inclusive UPSI(1S) production cross section as a function of rapidity in p-Pb collisions at sqrt(s_NN) = 5.02 TeV. The data was collected in 2013 with two beam configurations, p-Pb and Pb-p with integrated luminosities of 5.0 nb-1 and 5.8 nb-1, respectively.
Inclusive UPSI(2S) production cross section as a function of rapidity in p-Pb collisions at sqrt(s_NN) = 5.02 TeV. The data was collected in 2013 with two beam configurations, p-Pb and Pb-p with integrated luminosities of 5.0 nb-1 and 5.8 nb-1, respectively.
We report on the measurement of the inclusive $\Upsilon$(1S) production in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV carried out at forward rapidity ($2.5<y<4$) and down to zero transverse momentum using its $\mu^{+}\mu^{-}$ decay channel with the ALICE detector at the Large Hadron Collider. A strong suppression of the inclusive $\Upsilon$(1S) yield is observed with respect to pp collisions scaled by the number of independent nucleon-nucleon collisions. The nuclear modification factor, for events in the 0-90$\%$ centrality range, amounts to $0.30\pm0.05{\rm (stat)}\pm0.04{\rm (syst)}$. The observed $\Upsilon$(1S) suppression increases with the centrality of the collision and is more pronounced than in corresponding mid-rapidity measurements. Our results are compared with model calculations, which are found to underestimate the measured suppression and fail to reproduce its rapidity dependence.
Inclusive Upsilon (1S) Nuclear Modification Factor (Raa) measured in Lead-Lead collisions at sqrt(sNN) = 2.76 TeV in 2.5 < y < 4 and pt > 0 GeV, as a function of the average number of participating nucleons (<Npart>). Data have been collected in 2011 and the integrated luminosity is ~ 70 inverse microbarn.
Inclusive Upsilon (1S) Nuclear Modification Factor (Raa) measured in Lead-Lead collisions at sqrt(sNN) = 2.76 TeV in 2.5 < y < 4 and pt > 0 GeV, as a function of the rapidity. Data have been collected in 2011 and the integrated luminosity is ~ 70 inverse microbarn.
Invariant yields of neutral pions at midrapidity in the transverse momentum range $0.6 < p_{T} < 12 GeV/c$ measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV are presented for six centrality classes. The pp reference spectrum was measured in the range $0.4 < p_{T} < 10 GeV/c$ at the same center-of-mass energy. The nuclear modification factor, $R_{\rm AA}$, shows a suppression of neutral pions in central Pb-Pb collisions by a factor of up to about $8-10$ for $5 \lesssim p_{T} \lesssim 7 GeV/c$. The presented measurements are compared with results at lower center-of-mass energies and with theoretical calculations.
Invariant differential yields of PI0 produced in inelastic pp collisions at center-of-mass energy 2.76 TeV.
Invariant differential cross section of PI0 produced in inelastic pp collisions at center-of-mass energy 2.76 TeV, the uncertainty of \sigma_{inel} of 3.9% is not included in the systematic error.
Invariant differential yields of PI0 produced in 0-5% central inelastic PbPb collisions at center-of-mass energy per nucleon 2.76 TeV.
The production of the prompt charmed mesons $D^0$, $D^+$ and $D^{*+}$ relative to the reaction plane was measured in Pb-Pb collisions at a centre-of-mass energy per nucleon-nucleon collision of $\sqrt{s_{\rm NN}} = 2.76$ TeV with the ALICE detector at the LHC. D mesons were reconstructed via their hadronic decays at central rapidity in the transverse momentum ($p_{\rm T}$) interval of 2-16 GeV/$c$. The azimuthal anisotropy is quantified in terms of the second coefficient $v_2$ in a Fourier expansion of the D meson azimuthal distribution, and in terms of the nuclear modification factor $R_{\rm AA}$, measured in the direction of the reaction plane and orthogonal to it. The $v_2$ coefficient was measured with three different methods and in three centrality classes in the interval 0-50%. A positive $v_2$ is observed in mid-central collisions (30-50% centrality class), with an mean value of $0.204_{-0.036}^{+0.099}$ (tot.unc.) in the interval $2 < p_{\rm T} < 6$ GeV/$c$, which decreases towards more central collisions (10-30% and 0-10% classes). The positive $v_2$ is also reflected in the nuclear modification factor, which shows a stronger suppression in the direction orthogonal to the reaction plane for mid-central collisions. The measurements are compared to theoretical calculations of charm quark transport and energy loss in high-density strongly-interacting matter at high temperature. The models that include substantial elastic interactions with an expanding medium provide a good description of the observed anisotropy. However, they are challenged to simultaneously describe the strong suppression of high-$p_{\rm T}$ yield of D mesons in central collisions and their azimuthal anisotropy in non-central collisions.
Prompt D^0 meson v2 as a function of pT for centrality 0-10%. The first systematic uncertainty is from the data and the second from the B feed-down.
Prompt D^0 meson v2 as a function of pT for centrality 10-30%. The first systematic uncertainty is from the data and the second from the B feed-down.
Prompt D^0 meson v2 as a function of pT for centrality 30-50%. The first systematic uncertainty is from the data and the second from the B feed-down.
The inclusive $J/\psi$ nuclear modification factor $R_{\rm AA}$ in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$=2.76 TeV has been measured by ALICE as a function of centrality in the e$^+$e$^-$ decay channel at mid-rapidity $|y|<0.8$ and as a function of centrality, transverse momentum and rapidity in the $\mu^{+}\mu^{-}$ decay channel at forward-rapidity $2.5<y<4$.The $J/\psi$ yields measured in Pb-Pb are suppressed compared to those in pp collisions scaled by the number of binary collisions. The $R_{\rm AA}$ integrated over a centrality range corresponding to 90% of the inelastic Pb-Pb cross section is $0.72\pm0.06$ (stat.) $\pm0.10$ (syst.) at mid-rapidity and $0.57 \pm 0.01$ (stat.) $\pm0.09$ (syst.) at forward-rapidity. At low transverse momentum, significantly larger values of $R_{\rm AA}$ are measured at forward-rapidity compared to measurements at lower energy. These features suggest that a contribution to the $J/\psi$ yield originates from charm quarks (re)combination in the deconfined partonic medium.
Inclusive Jpsi Nuclear Modification Factor (Raa) measured in Lead-Lead collisions at sqrt(sNN) = 2.76 TeV in 2.5 < y < 4 and 0 < pt < 8 GeV/c, as a function of the average number of participating nucleons (<Npart>). Data have been collected in 2011 and the integrated luminosity is ~ 70 inverse microbarn.
Inclusive Jpsi Nuclear Modification Factor (Raa) measured in Lead-Lead collisions at sqrt(sNN) = 2.76 TeV in |y| < 0.8 and pt > 0 GeV/c, as a function of the average number of participating nucleons (<Npart>). Data have been collected in 2010 and 2011 and the integrated luminosity is ~ 28 inverse microbarn.
Inclusive Jpsi Nuclear Modification Factor (Raa) measured in Lead-Lead collisions at sqrt(sNN) = 2.76 TeV as a function of transverse momentum in 2.5 < y < 4 for the centrality range 0%-90%. Data have been collected in 2011 and the integrated luminosity is ~ 70 inverse microbarn.