Showing 10 of 54 results
Exclusive photoproduction of $\rho^0(770)$ mesons is studied using the H1 detector at the $ep$ collider HERA. A sample of about 900000 events is used to measure single- and double-differential cross sections for the reaction $\gamma p \to \pi^{+}\pi^{-}Y$. Reactions where the proton stays intact (${m_Y{=}m_p}$) are statistically separated from those where the proton dissociates to a low-mass hadronic system ($m_p{<}m_Y{<}10$ GeV). The double-differential cross sections are measured as a function of the invariant mass $m_{\pi\pi}$ of the decay pions and the squared $4$-momentum transfer $t$ at the proton vertex. The measurements are presented in various bins of the photon-proton collision energy $W_{\gamma p}$. The phase space restrictions are $0.5 < m_{\pi\pi} < 2.2$ GeV, ${\vert t\vert < 1.5}$ GeV${}^2$, and ${20 < W_{\gamma p} < 80}$ GeV. Cross section measurements are presented for both elastic and proton-dissociative scattering. The observed cross section dependencies are described by analytic functions. Parametrising the $m_{\pi\pi}$ dependence with resonant and non-resonant contributions added at the amplitude level leads to a measurement of the $\rho^{0}(770)$ meson mass and width at $m_\rho = 770.8\ {}^{+2.6}_{-2.7}$ (tot) MeV and $\Gamma_\rho = 151.3\ {}^{+2.7}_{-3.6}$ (tot) MeV, respectively. The model is used to extract the $\rho^0(770)$ contribution to the $\pi^{+}\pi^{-}$ cross sections and measure it as a function of $t$ and $W_{\gamma p}$. In a Regge asymptotic limit in which one Regge trajectory $\alpha(t)$ dominates, the intercept $\alpha(t{=}0) = 1.0654\ {}^{+0.0098}_{-0.0067}$ (tot) and the slope $\alpha^\prime(t{=}0) = 0.233\ {}^{+0.067 }_{-0.074 }$ (tot) GeV${}^{-2}$ of the $t$ dependence are extracted for the case $m_Y{=}m_p$.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons, differential in the dipion mass. The tabulated cross sections are $\gamma p$ cross sections but can be converted to $ep$ cross sections using the effective photon flux $\Phi_{\gamma/e}$.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons, differential in the dipion mass --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Fit of elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction cross section off protons with a Soeding-inspired analytic function including $\rho$ and $\omega$ meson resonant contributions as well as a continuum background which interfere at the amplitude level. Parameters with subscript "el" and "pd" correspond to elastic and proton-dissociative cross sections, respectively.
Fit of elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons with a Soeding-inspired analytic function --- statistical correlations only. Only one half of the (symmetric) matrix is stored.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons, differential in the dipion mass and in bins of $W$. The tabulated cross sections are $\gamma p$ cross sections but can be converted to $ep$ cross sections using the effective photon flux $\Phi_{\gamma/e}$.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons, differential in the dipion mass and in bins of $W$ --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction off protons, in bins of the photon-proton energy $W$. The cross section is defined as the integral of the relativistic Breit Wigner resonance in the dipion mass over the range $2m_\pi<m_{\pi\pi}<1.53$ GeV. The tabulated cross sections are $\gamma p$ cross sections but can be converted to $ep$ cross sections using the effective photon flux $\Phi_{\gamma/e}$.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction off protons in bins of the photon-proton energy $W$ --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Fit of elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction cross sections off protons as a function of energy. Parameters with subscript "el" and "pd" correspond to elastic and proton-dissociative cross sections, respectively.
Fit of elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction cross sections off protons as a function of energy --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Fit of elastic $\rho^0(770)$ photoproduction cross section off protons as a function of energy (various experiments)
Fit of elastic $\rho^0(770)$ photoproduction cross sections off protons as a function of energy (various experiments) --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction cross section off protons, double-differential in the dipion mass and the momentum transfer $\vert t\vert$. The tabulated cross sections are $\gamma p$ cross sections but can be converted to $ep$ cross sections using the effective photon flux $\Phi_{\gamma/e}$.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction cross section off protons, double-differential in the dipion mass and the momentum transfer $\vert t\vert$ --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction off protons, single-differential in the momentum transfer $\vert t\vert$. The cross section is defined as the integral of the relativistic Breit Wigner resonance in the dipion mass over the range $2m_\pi<m_{\pi\pi}<1.53$ GeV. The tabulated cross sections are $\gamma p$ cross sections but can be converted to $ep$ cross sections using the effective photon flux $\Phi_{\gamma/e}$.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction off protons, single differential in the momentum transfer $\vert t\vert$ --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Fit of elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction single-differential cross sections off protons as a function of momentum transfer $t$. Parameters with subscript "el" and "pd" correspond to elastic and proton-dissociative cross sections, respectively.
Fit of elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction single-differential cross sections off protons as a function of momentum transfer $t$ --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction double-differenial cross section off protons, as a function of the dipion mass and the momentum transfer $\vert t\vert$, in bins of the photon-proton energy $W$ The tabulated cross sections are $\gamma p$ cross sections but can be converted to $ep$ cross sections using the effective photon flux $\Phi_{\gamma/e}$.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction double-differenial cross section off protons, as a function of the dipion mass and the momentum transfer $\vert t\vert$, in bins of the photon-proton energy $W$ --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction off protons, single-differential in the momentum transfer $\vert t\vert$, in bins of the photon-proton energy $W$. The cross section is defined as the integral of the relativistic Breit Wigner resonance in the dipion mass over the range $2m_\pi<m_{\pi\pi}<1.53$ GeV. The tabulated cross sections are $\gamma p$ cross sections but can be converted to $ep$ cross sections using the effective photon flux $\Phi_{\gamma/e}$.
Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction cross section off protons, single differential in the momentum transfer $\vert t\vert$ and in bins of the photon-proton energy $W$ --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Regge fit of elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction single-differential cross sections off protons as a function of momentum transfer $t$ and photon-proton energy $W$. Parameters with subscript "el" and "pd" correspond to elastic and proton-dissociative cross sections, respectively.
Regge fit of elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction single-differential cross sections off protons as a function of momentum transfer $t$ and photon-proton energy $W$ --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Fit of $b$-slopes in elastic ($m_Y=m_p$) $\rho^0(770)$ photoproduction single-differential cross sections off protons as a function of momentum transfer $t$ in bins of photon-proton energy $W$.
Fit of $b$-slopes in elastic ($m_Y=m_p$) $\rho^0(770)$ photoproduction single-differential cross sections off protons as a function of momentum transfer $t$ in bins of photon-proton energy $W$ --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Fit of Pomeron trajectories in elastic ($m_Y=m_p$) $\rho^0(770)$ photoproduction single-differential cross sections off protons as a function of momentum transfer $t$ in bins of photon-proton energy $W$.
Fit of Pomeron trajectories in elastic ($m_Y=m_p$) $\rho^0(770)$ photoproduction single-differential cross sections off protons as a function of momentum transfer $t$ in bins of photon-proton energy $W$ --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.
Exclusive production of the isoscalar vector mesons $\omega$ and $\phi$ is measured with a 190 GeV$/c$ proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable $x_{F}$ of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on $x_{F}$ and on the invariant mass $M_{p\mathrm{V}}$ of the system formed by fast proton $p_\mathrm{fast}$ and vector meson $V$ is discussed in terms of diffractive production of $p_\mathrm{fast}V$ resonances in competition with central production. The measurement of the spin density matrix element $\rho_{00}$ of the vector mesons in different selected reference frames provides another handle to distinguish the contributions of these two major reaction types. Again, dependences of the alignment on $x_{F}$ and on $M_{p\mathrm{V}}$ are found. Most of the observations can be traced back to the existence of several excited baryon states contributing to $\omega$ production which are absent in the case of the $\phi$ meson. Removing the low-mass $M_{p\mathrm{V}}$ resonant region, the OZI rule is found to be violated by a factor of eight, independently of $x_\mathrm{F}$.
Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI). R(PHI/OMEGA) is multiplied by 100 to improve readability.
Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI) for different cuts on the vector meson momentum P(V). R(PHI/OMEGA) is multiplied by 100 to improve readability.
Spin alignment RHO(00) extracted from the helicity angle distributions for PHI and OMEGA production, in the latter case with various cuts on P(V). The uncertainty is the propagated uncertainty from the linear fits, which in turn includes the quadratic sum of statistical uncertainties and uncertainties from the background subtraction.
Spin alignment RHO(00) extracted from the helicity angle distributions for PHI and OMEGA production in the given XF regions for different M(PV) regions. The uncertainty is the propagated uncertainty from the linear fits, which in turn includes the quadratic sum of statistical uncertainties and uncertainties from the background subtraction.
Spin alignment RHO(00) extracted using DELTA(P), the direction of the momentum transfer from the beam proton in the initial state to the fast proton in the final state, as the reference axis. The table includes PHI and OMEGA production. The results for different P(V) cuts are also given for OMEGA production. The uncertainty is the propagated uncertainty from the linear fits, which in turn includes the quadratic sum of statistical uncertainties and uncertainties from the background subtraction.
Characteristics of multi-particle production in proton-proton collisions at $\sqrt{s}$=7 TeV are studied as a function of the charged-particle multiplicity, $N_{ch}$. The produced particles are separated into two classes: those belonging to jets and those belonging to the underlying event. Charged particles are measured with pseudorapidity |η|<2.4 and transverse momentum $p_T$ > 0.25 GeV/c. Jets are reconstructed from charged-particles only and required to have $p_T$ > 5 GeV/c. The distributions of jet $p_T$, average $p_T$ of charged particles belonging to the underlying event or to jets, jet rates, and jet shapes are presented as functions of $N_{ch}$ and compared to the predictions of the PYTHIA and HERWIG event generators. Predictions without multi-parton interactions fail completely to describe the $N_{ch}$-dependence observed in the data. For increasing $N_{ch}$, PYTHIA systematically predicts higher jet rates and harder $p_T$ spectra than seen in the data, whereas HERWIG shows the opposite trends. At the highest multiplicity, the data–model agreement is worse for most observables, indicating the need for further tuning and/or new model ingredients.
Mean $p_T$, all charged particles.
Mean $p_T$, UE charged particles.
Mean $p_T$, in-jet charged particles.
Mean $p_T$, leading in-jet charged particle.
Mean $p_T$, charged particle jets, $p^{ch.jet}_T > 5$ GeV, $|\eta^{ch.jet}| < 1.9$.
Charged jet rate, $p^\text{ch.jet}_T > 5$ GeV, $|\eta^{ch.jet}| < 1.9$.
Charged jet rate, $p^\text{ch.jet}_T > 30$ GeV, $|\eta^{ch.jet}| < 1.9$.
Jet $p_T$ spectrum, $|\eta^{ch.jet}| < 1.9$, $10 < N_\text{ch} \le 30$.
Jet $p_T$ spectrum, $|\eta^{ch.jet}| < 1.9$, $30 < N_\text{ch} \le 50$.
Jet $p_T$ spectrum, $|\eta^{ch.jet}| < 1.9$, $50 < N_\text{ch} \le 80$.
Jet $p_T$ spectrum, $|\eta^{ch.jet}| < 1.9$, $80 < N_\text{ch} \le 110$.
Jet $p_T$ spectrum, $|\eta^{ch.jet}| < 1.9$, $110 < N_\text{ch} \le 140$.
Intrajet ring $p_{T}$ density, $10 < N_\text{ch} \le 30$.
Intrajet ring $p_{T}$ density, $30 < N_\text{ch} \le 50$.
Intrajet ring $p_{T}$ density, $50 < N_\text{ch} \le 80$.
Intrajet ring $p_{T}$ density, $80 < N_\text{ch} \le 110$.
Intrajet ring $p_{T}$ density, $110 < N_\text{ch} \le 140$.
Measurements of jet characteristics from inclusive jet production in proton-proton collisions at a centre-of-mass energy of 7 TeV are presented. The data sample was collected with the CMS detector at the LHC during 2010 and corresponds to an integrated luminosity of 36 inverse picobarns. The mean charged hadron multiplicity, the differential and integral jet shape distributions, and two independent moments of the shape distributions are measured as functions of the jet transverse momentum for jets reconstructed with the anti-kT algorithm. The measured observables are corrected to the particle level and compared with predictions from various QCD Monte Carlo generators.
The measured differential jet shape $\rho(r)$ for jets with 20 GeV $< p_{\mathrm{T}} <$ 25 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 25 GeV $< p_{\mathrm{T}} <$ 30 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 30 GeV $< p_{\mathrm{T}} <$ 40 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 40 GeV $< p_{\mathrm{T}} <$ 50 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 50 GeV $< p_{\mathrm{T}} <$ 60 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 60 GeV $< p_{\mathrm{T}} <$ 70 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 70 GeV $< p_{\mathrm{T}} <$ 80 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 80 GeV $< p_{\mathrm{T}} <$ 90 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 90 GeV $< p_{\mathrm{T}} <$ 100 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 100 GeV $< p_{\mathrm{T}} <$ 110 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 110 GeV $< p_{\mathrm{T}} <$ 125 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 125 GeV $< p_{\mathrm{T}} <$ 140 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 140 GeV $< p_{\mathrm{T}} <$ 160 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 160 GeV $< p_{\mathrm{T}} <$ 180 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 180 GeV $< p_{\mathrm{T}} <$ 200 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 200 GeV $< p_{\mathrm{T}} <$ 225 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 225 GeV $< p_{\mathrm{T}} <$ 250 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 250 GeV $< p_{\mathrm{T}} <$ 300 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 300 GeV $< p_{\mathrm{T}} <$ 400 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 400 GeV $< p_{\mathrm{T}} <$ 500 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 500 GeV $< p_{\mathrm{T}} <$ 600 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 600 GeV $< p_{\mathrm{T}} <$ 1000 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 20 GeV $< p_{\mathrm{T}} <$ 25 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 25 GeV $< p_{\mathrm{T}} <$ 30 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 30 GeV $< p_{\mathrm{T}} <$ 40 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 40 GeV $< p_{\mathrm{T}} <$ 50 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 50 GeV $< p_{\mathrm{T}} <$ 60 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 60 GeV $< p_{\mathrm{T}} <$ 70 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 70 GeV $< p_{\mathrm{T}} <$ 80 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 80 GeV $< p_{\mathrm{T}} <$ 90 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 90 GeV $< p_{\mathrm{T}} <$ 100 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 100 GeV $< p_{\mathrm{T}} <$ 110 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 110 GeV $< p_{\mathrm{T}} <$ 125 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 125 GeV $< p_{\mathrm{T}} <$ 140 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 140 GeV $< p_{\mathrm{T}} <$ 160 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 160 GeV $< p_{\mathrm{T}} <$ 180 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 180 GeV $< p_{\mathrm{T}} <$ 200 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 200 GeV $< p_{\mathrm{T}} <$ 225 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 225 GeV $< p_{\mathrm{T}} <$ 250 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 250 GeV $< p_{\mathrm{T}} <$ 300 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 300 GeV $< p_{\mathrm{T}} <$ 400 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 400 GeV $< p_{\mathrm{T}} <$ 500 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 500 GeV $< p_{\mathrm{T}} <$ 600 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 600 GeV $< p_{\mathrm{T}} <$ 1000 GeV and 0.5 <|y|< 1.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 20 GeV $< p_{\mathrm{T}} <$ 25 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 25 GeV $< p_{\mathrm{T}} <$ 30 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 30 GeV $< p_{\mathrm{T}} <$ 40 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 40 GeV $< p_{\mathrm{T}} <$ 50 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 50 GeV $< p_{\mathrm{T}} <$ 60 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 60 GeV $< p_{\mathrm{T}} <$ 70 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 70 GeV $< p_{\mathrm{T}} <$ 80 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 80 GeV $< p_{\mathrm{T}} <$ 90 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 90 GeV $< p_{\mathrm{T}} <$ 100 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 100 GeV $< p_{\mathrm{T}} <$ 110 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 110 GeV $< p_{\mathrm{T}} <$ 125 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 125 GeV $< p_{\mathrm{T}} <$ 140 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 140 GeV $< p_{\mathrm{T}} <$ 160 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 160 GeV $< p_{\mathrm{T}} <$ 180 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 180 GeV $< p_{\mathrm{T}} <$ 200 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 200 GeV $< p_{\mathrm{T}} <$ 225 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 225 GeV $< p_{\mathrm{T}} <$ 250 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 250 GeV $< p_{\mathrm{T}} <$ 300 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 300 GeV $< p_{\mathrm{T}} <$ 400 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 400 GeV $< p_{\mathrm{T}} <$ 500 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 500 GeV $< p_{\mathrm{T}} <$ 600 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 600 GeV $< p_{\mathrm{T}} <$ 1000 GeV and 1.0 <|y|< 1.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 20 GeV $< p_{\mathrm{T}} <$ 25 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 25 GeV $< p_{\mathrm{T}} <$ 30 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 30 GeV $< p_{\mathrm{T}} <$ 40 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 40 GeV $< p_{\mathrm{T}} <$ 50 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 50 GeV $< p_{\mathrm{T}} <$ 60 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 60 GeV $< p_{\mathrm{T}} <$ 70 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 70 GeV $< p_{\mathrm{T}} <$ 80 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 80 GeV $< p_{\mathrm{T}} <$ 90 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 90 GeV $< p_{\mathrm{T}} <$ 100 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 100 GeV $< p_{\mathrm{T}} <$ 110 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 110 GeV $< p_{\mathrm{T}} <$ 125 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 125 GeV $< p_{\mathrm{T}} <$ 140 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 140 GeV $< p_{\mathrm{T}} <$ 160 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 160 GeV $< p_{\mathrm{T}} <$ 180 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 180 GeV $< p_{\mathrm{T}} <$ 200 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 200 GeV $< p_{\mathrm{T}} <$ 225 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 225 GeV $< p_{\mathrm{T}} <$ 250 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 250 GeV $< p_{\mathrm{T}} <$ 300 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 300 GeV $< p_{\mathrm{T}} <$ 400 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 400 GeV $< p_{\mathrm{T}} <$ 500 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 500 GeV $< p_{\mathrm{T}} <$ 600 GeV and 1.5 <|y|< 2.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 20 GeV $< p_{\mathrm{T}} <$ 25 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 25 GeV $< p_{\mathrm{T}} <$ 30 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 30 GeV $< p_{\mathrm{T}} <$ 40 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 40 GeV $< p_{\mathrm{T}} <$ 50 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 50 GeV $< p_{\mathrm{T}} <$ 60 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 60 GeV $< p_{\mathrm{T}} <$ 70 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 70 GeV $< p_{\mathrm{T}} <$ 80 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 80 GeV $< p_{\mathrm{T}} <$ 90 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 90 GeV $< p_{\mathrm{T}} <$ 100 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 100 GeV $< p_{\mathrm{T}} <$ 110 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 110 GeV $< p_{\mathrm{T}} <$ 125 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 125 GeV $< p_{\mathrm{T}} <$ 140 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 140 GeV $< p_{\mathrm{T}} <$ 160 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 160 GeV $< p_{\mathrm{T}} <$ 180 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 180 GeV $< p_{\mathrm{T}} <$ 200 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 200 GeV $< p_{\mathrm{T}} <$ 225 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 225 GeV $< p_{\mathrm{T}} <$ 250 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 250 GeV $< p_{\mathrm{T}} <$ 300 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 300 GeV $< p_{\mathrm{T}} <$ 400 GeV and 2.0 <|y|< 2.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 20 GeV $< p_{\mathrm{T}} <$ 25 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 25 GeV $< p_{\mathrm{T}} <$ 30 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 30 GeV $< p_{\mathrm{T}} <$ 40 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 40 GeV $< p_{\mathrm{T}} <$ 50 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 50 GeV $< p_{\mathrm{T}} <$ 60 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 60 GeV $< p_{\mathrm{T}} <$ 70 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 70 GeV $< p_{\mathrm{T}} <$ 80 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 80 GeV $< p_{\mathrm{T}} <$ 90 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 90 GeV $< p_{\mathrm{T}} <$ 100 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 100 GeV $< p_{\mathrm{T}} <$ 110 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 110 GeV $< p_{\mathrm{T}} <$ 125 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 125 GeV $< p_{\mathrm{T}} <$ 140 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 140 GeV $< p_{\mathrm{T}} <$ 160 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 160 GeV $< p_{\mathrm{T}} <$ 180 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 180 GeV $< p_{\mathrm{T}} <$ 200 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 200 GeV $< p_{\mathrm{T}} <$ 225 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 225 GeV $< p_{\mathrm{T}} <$ 250 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 250 GeV $< p_{\mathrm{T}} <$ 300 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 300 GeV $< p_{\mathrm{T}} <$ 400 GeV and 2.5 <|y|< 3.0. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The dependence of $\langle N_\mathrm{ch} \rangle$ on the transverse momentum of jets in two different rapidity regions, $|y| < 1$ and $1 < |y| < 2$.
The dependence of $\langle \delta R^2 \rangle$ on the transverse momentum of jets in two different rapidity regions, $|y| < 1$ and $ 1 < |y| < 2 $.
The dependence of $\langle\delta \eta^2\rangle/\langle\delta \phi^2\rangle$ on the transverse momentum for jets with $|y| < 1$.
Jet shapes have been measured in inclusive jet production in proton-proton collisions at sqrt(s) = 7 TeV using 3 pb^{-1} of data recorded by the ATLAS experiment at the LHC. Jets are reconstructed using the anti-kt algorithm with transverse momentum 30 GeV < pT < 600 GeV and rapidity in the region |y| < 2.8. The data are corrected for detector effects and compared to several leading-order QCD matrix elements plus parton shower Monte Carlo predictions, including different sets of parameters tuned to model fragmentation processes and underlying event contributions in the final state. The measured jets become narrower with increasing jet transverse momentum and the jet shapes present a moderate jet rapidity dependence. Within QCD, the data test a variety of perturbative and non-perturbative effects. In particular, the data show sensitivity to the details of the parton shower, fragmentation, and underlying event models in the Monte Carlo generators. For an appropriate choice of the parameters used in these models, the data are well described.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 500 to 600 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 0 to 2.8.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 0 to 0.3.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 0.3 to 0.8.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 0.8 to 1.2.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 1.2 to 2.1.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 2.1 to 2.8.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 500 to 600 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Diffractive electroproduction of rho and phi mesons is measured at HERA with the H1 detector in the elastic and proton dissociative channels. The data correspond to an integrated luminosity of 51 pb^-1. About 10500 rho and 2000 phi events are analysed in the kinematic range of squared photon virtuality 2.5 < Q^2 < 60 GeV^2, photon-proton centre of mass energy 35 < W < 180 GeV and squared four-momentum transfer to the proton |t| < 3 GeV^2. The total, longitudinal and transverse cross sections are measured as a function of Q^2, W and |t|. The measurements show a transition to a dominantly "hard" behaviour, typical of high gluon densities and small q\bar{q} dipoles, for Q^2 larger than 10 to 20 GeV^2. They support flavour independence of the diffractive exchange, expressed in terms of the scaling variable (Q^2 + M_V^2)/4, and proton vertex factorisation. The spin density matrix elements are measured as a function of kinematic variables. The ratio of the longitudinal to transverse cross sections, the ratio of the helicity amplitudes and their relative phases are extracted. Several of these measurements have not been performed before and bring new information on the dynamics of diffraction in a QCD framework. The measurements are discussed in the context of models using generalised parton distributions or universal dipole cross sections.
Q**2 dependence of the GAMMA* P elastic RHO0 meson production at mean W There is an additional overall normalization uncertainty of 3.9 PCT.
Q**2 dependence of the GAMMA* P cross section for proton dissociative RHO0 meson production at mean W There is an additional overall normalization uncertainty of 4.6 PCT.
Q**2 dependence of the GAMMA* P elastic PHI meson production at mean W There is an additional overall normalization uncertainty of 4.7 PCT.
Q**2 dependence of the GAMMA* P cross section for proton dissociative PHI meson production at mean W There is an additional overall normalization uncertainty of 5.3 PCT.
Q**2 dependence of the ratio pf the PHI to RHO0 elastic cross section for mean W There is an additional overall normalization uncertainty of 4.0 PCT.
Q**2 + MASS(V)**2 dependence of the ratio pf the PHI to RHO0 elastic cross section for mean W There is an additional overall normalization uncertainty of 4.0 PCT.
Q**2 dependence of the longitudinal and transverse GAMMA* P cross sections for elastic RHO0 production at mean W There is an additional overall normalization uncertainty of 3.9 PCT.
Q**2 dependence of the longitudinal and transverse GAMMA* P cross sections for elastic PHI production at mean W There is an additional overall normalization uncertainty of 4.7 PCT.
W dependence of the GAMMA* P cross section for elastic RHO0 production for Q**2 There is an additional overall normalization uncertainty of 3.9 PCT.
W dependence of the GAMMA* P cross section for elastic RHO0 production for Q**2 There is an additional overall normalization uncertainty of 3.9 PCT.
W dependence of the GAMMA* P cross section for elastic RHO0 production for Q**2 There is an additional overall normalization uncertainty of 3.9 PCT.
W dependence of the GAMMA* P cross section for elastic RHO0 production for Q**2 There is an additional overall normalization uncertainty of 3.9 PCT.
W dependence of the GAMMA* P cross section for elastic RHO0 production for Q**2 There is an additional overall normalization uncertainty of 3.9 PCT.
W dependence of the GAMMA* P cross section for dissociative RHO0 production for Q**2 There is an additional overall normalization uncertainty of 4.6 PCT.
W dependence of the GAMMA* P cross section for dissociative RHO0 production for Q**2 There is an additional overall normalization uncertainty of 4.6 PCT.
W dependence of the GAMMA* P cross section for dissociative RHO0 production for Q**2 There is an additional overall normalization uncertainty of 4.6 PCT.
W dependence of the GAMMA* P cross section for elastic PHI production for Q**2 There is an additional overall normalization uncertainty of 4.7 PCT.
W dependence of the GAMMA* P cross section for elastic PHI production for Q**2 There is an additional overall normalization uncertainty of 4.7 PCT.
W dependence of the GAMMA* P cross section for elastic PHI production for Q**2 There is an additional overall normalization uncertainty of 4.7 PCT.
W dependence of the GAMMA* P cross section for dissociative PHI production for Q**2 There is an additional overall normalization uncertainty of 5.3 PCT.
T dependence of the GAMMA* P cross section for elastic RHO0 production for several values. There is an additional overall normalization uncertainty of 3.9 PCT.
T dependence of the GAMMA* P cross section for dissociative RHO0 production for several values. There is an additional overall normalization uncertainty of 4.6 PCT.
T dependence of the GAMMA* P cross section for elastic PHI production for several values. There is an additional overall normalization uncertainty of 4.7 PCT.
T dependence of the GAMMA* P cross section for dissociative PHI production for several values. There is an additional overall normalization uncertainty of 5.3 PCT.
Q**2 dependence of the slope of the T distribution in elastic RHO0 production.
Q**2 dependence of the slope of the T distribution in elastic PHI production.
Q**2 dependence of the slope of the T distribution in dissociative RHO0 production.
Q**2 dependence of the slope of the T distribution in dissociative PHI production.
W dependence of the GAMMA* P cross section for dissociative RHO0 production in four ABS(T) bins at Q**2 There is an additional normalization uncertainty of 4 PCT.
W dependence of the GAMMA* P cross section for dissociative RHO0 production in four ABS(T) bins at Q**2 There is an additional normalization uncertainty of 4 PCT.
Q**2 dependence of the ratio of proton dissociative to elastic RHO0 meson total cross section. There is an additional overall normalization uncertainty of 2.4 PCT.
Q**2 dependence of the ratio of proton dissociative to elastic PHI meson total cross section. There is an additional overall normalization uncertainty of 2.4 PCT.
Q**2 dependence of the ratio of proton dissociative to elastic RHO0 meson differential cross section at T=0. There is an additional overall normalization uncertainty of 2.4 PCT.
Q**2 dependence of the ratio of proton dissociative to elastic PHI mesondifferential cross section at T=0. There is an additional overall normalization uncertainty of 2.4 PCT.
Slope differences between elastic and proton dissociative scattering for RHO0 meson production.
Slope differences between elastic and proton dissociative scattering for PHI meson production.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of Q**2.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of Q**2.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of Q**2.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of Q**2.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of Q**2.
Spin density matrix elements for diffractive electroproduction of PHI mesons as a function of Q**2.
Spin density matrix elements for diffractive electroproduction of PHI mesons as a function of Q**2.
Spin density matrix elements for diffractive electroproduction of PHI mesons as a function of Q**2.
Spin density matrix elements for diffractive electroproduction of PHI mesons as a function of Q**2.
Spin density matrix elements for diffractive electroproduction of PHI mesons as a function of Q**2.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of W.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of W.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of W.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of W.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of W.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of W.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of W.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of W.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of W.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of W.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of W.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of W.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of W.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of W.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of W.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of T.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of T.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of T.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of T.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of T.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of T.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of T.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of T.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of T.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of T.
Spin density matrix elements for diffractive electroproduction of PHI mesons as a function of T.
Spin density matrix elements for diffractive electroproduction of PHI mesons as a function of T.
Spin density matrix elements for diffractive electroproduction of PHI mesons as a function of T.
Spin density matrix elements for diffractive electroproduction of PHI mesons as a function of T.
Spin density matrix elements for diffractive electroproduction of PHI mesons as a function of T.
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of M(PI+PI-).
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of M(PI+PI-).
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of M(PI+PI-).
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of M(PI+PI-).
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of M(PI+PI-).
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of M(PI+PI-).
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of M(PI+PI-).
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of M(PI+PI-).
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of M(PI+PI-).
Spin density matrix elements for diffractive electroproduction of RHO0 mesons as a function of M(PI+PI-).
Q**2 dependence of the matrix element combination RHO(JJ=5,MM=00) + 2*RHO(JJ=5,MM=11).
Q**2 dependence of the matrix element combination RHO(JJ=1,MM=00) + 2*RHO(JJ=1,MM=11).
T dependence of the matrix element combination RHO(JJ=5,MM=00) + 2*RHO(JJ=5,MM=11).
T dependence of the matrix element combination RHO(JJ=1,MM=00) + 2*RHO(JJ=1,MM=11).
Q**2 dependence of the ratio R.
Q**2 dependence of the ratio R.
W dependence of the ratio R.
W dependence of the ratio R.
W dependence of the ratio R.
T dependence of the ratio R.
T dependence of the ratio R.
Di-pion mass dependence of the ratio R.
Di-pion mass dependence of the ratio R.
Dependence of the exponential slope of the T distribution as a function of the di-pion mass for the Q**2 range 2.5 to 5 GeV**2.
Dependence of the exponential slope of the T distribution as a function of the di-pion mass for the Q**2 range 5 to 60 GeV**2.
Q**2 dependence of the ratio of the helicity amplitudes (assumed purely imaginary) and phase difference between the T11 and T00 amplitudes for RHO0 production.
Q**2 dependence of the ratio of the helicity amplitudes (assumed purely imaginary) and phase difference between the T11 and T00 amplitudes for PHI production.
T dependence of the ratio of the helicity amplitudes (assumed purely imaginary) and phase difference between the T11 and T00 amplitudes for RHO0 production in the Q**2 range 2.5 to 5 GeV**2.
T dependence of the ratio of the helicity amplitudes (assumed purely imaginary) and phase difference between the T11 and T00 amplitudes for RHO0 production in the Q**2 range 5 to 60 GeV**2.
T dependence of the ratio of the helicity amplitudes (assumed purely imaginary) and phase difference between the T11 and T00 amplitudes for PHI production in the Q**2 range 2.5 to 60 GeV**2.
Di-pion mass dependence of the helicity amplitudes (assumed purely imaginary) and phase difference between the T11 and T00 amplitudes for RHO0 production in the Q**2 range 2.5 to 5 GeV**2.
Di-pion mass dependence of the helicity amplitudes (assumed purely imaginary) and phase difference between the T11 and T00 amplitudes for RHO0 production in the Q**2 range 5 to 60 GeV**2.
The proton-dissociative diffractive photoproduction of J/psi mesons has been studied in ep collisions with the ZEUS detector at HERA using an integrated luminosity of 112 pb^-1. The cross section is presented as a function of the photon-proton centre-of-mass energy and of the squared four-momentum transfer at the proton vertex. The results are compared to perturbative QCD calculations.
The differential cross section DSIG/DT as a function of T.
The differential cross section DSIG/DT as a function of W in the ABS(T) range 2.0 to 2.5 GeV**2.
The differential cross section DSIG/DT as a function of W in the ABS(T) range 2.5 to 3.0 GeV**2.
The differential cross section DSIG/DT as a function of W in the ABS(T) range 3.0 to 4.0 GeV**2.
The differential cross section DSIG/DT as a function of W in the ABS(T) range 4.0 to 5.0 GeV**2.
The differential cross section DSIG/DT as a function of W in the ABS(T) range 5.0 to 6.5 GeV**2.
The differential cross section DSIG/DT as a function of W in the ABS(T) range 6.5 to 8.0 GeV**2.
The differential cross section DSIG/DT as a function of W in the ABS(T) range 8.0 to 11.0 GeV**2.
The differential cross section DSIG/DT as a function of W in the ABS(T) range 11.0 to 20.0 GeV**2.
The differential cross section DSIG/DT as a function of W in the ABS(T) range 2 to 3 GeV**2.
The differential cross section DSIG/DT as a function of W in the ABS(T) range 3 to 5 GeV**2.
The differential cross section DSIG/DT as a function of W in the ABS(T) range 5 to 10 GeV**2.
The differential cross section DSIG/DT as a function of W in the ABS(T) range 10 to 20 GeV**2.
Spin density events as a function of T.
High-statistics differential cross sections and spin density matrix elements for the reaction $\gamma p \to p \omega$ have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into $\cos{\theta_{CM}^{\omega}}$ bins of width 0.1. These are the most precise and extensive $\omega$ photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.
Differential cross section for the W range 1.72 to 1.73 GeV.
Differential cross section for the W range 1.73 to 1.74 GeV.
Differential cross section for the W range 1.74 to 1.75 GeV.
Differential cross section for the W range 1.75 to 1.76 GeV.
Differential cross section for the W range 1.76 to 1.77 GeV.
Differential cross section for the W range 1.77 to 1.78 GeV.
Differential cross section for the W range 1.78 to 1.79 GeV.
Differential cross section for the W range 1.79 to 1.80 GeV.
Differential cross section for the W range 1.80 to 1.81 GeV.
Differential cross section for the W range 1.81 to 1.82 GeV.
Differential cross section for the W range 1.82 to 1.83 GeV.
Differential cross section for the W range 1.83 to 1.84 GeV.
Differential cross section for the W range 1.84 to 1.85 GeV.
Differential cross section for the W range 1.85 to 1.86 GeV.
Differential cross section for the W range 1.86 to 1.87 GeV.
Differential cross section for the W range 1.87 to 1.88 GeV.
Differential cross section for the W range 1.88 to 1.89 GeV.
Differential cross section for the W range 1.89 to 1.90 GeV.
Differential cross section for the W range 1.90 to 1.91 GeV.
Differential cross section for the W range 1.91 to 1.92 GeV.
Differential cross section for the W range 1.92 to 1.93 GeV.
Differential cross section for the W range 1.93 to 1.94 GeV.
Differential cross section for the W range 1.94 to 1.95 GeV.
Differential cross section for the W range 1.96 to 1.97 GeV.
Differential cross section for the W range 1.97 to 1.98 GeV.
Differential cross section for the W range 1.98 to 1.99 GeV.
Differential cross section for the W range 1.99 to 2.00 GeV.
Differential cross section for the W range 2.00 to 2.01 GeV.
Differential cross section for the W range 2.01 to 2.02 GeV.
Differential cross section for the W range 2.02 to 2.03 GeV.
Differential cross section for the W range 2.03 to 2.04 GeV.
Differential cross section for the W range 2.04 to 2.05 GeV.
Differential cross section for the W range 2.05 to 2.06 GeV.
Differential cross section for the W range 2.06 to 2.07 GeV.
Differential cross section for the W range 2.07 to 2.08 GeV.
Differential cross section for the W range 2.08 to 2.09 GeV.
Differential cross section for the W range 2.09 to 2.10 GeV.
Differential cross section for the W range 2.10 to 2.11 GeV.
Differential cross section for the W range 2.11 to 2.12 GeV.
Differential cross section for the W range 2.12 to 2.13 GeV.
Differential cross section for the W range 2.13 to 2.14 GeV.
Differential cross section for the W range 2.14 to 2.15 GeV.
Differential cross section for the W range 2.15 to 2.16 GeV.
Differential cross section for the W range 2.16 to 2.17 GeV.
Differential cross section for the W range 2.17 to 2.18 GeV.
Differential cross section for the W range 2.18 to 2.19 GeV.
Differential cross section for the W range 2.19 to 2.20 GeV.
Differential cross section for the W range 2.20 to 2.21 GeV.
Differential cross section for the W range 2.21 to 2.22 GeV.
Differential cross section for the W range 2.22 to 2.23 GeV.
Differential cross section for the W range 2.23 to 2.24 GeV.
Differential cross section for the W range 2.24 to 2.25 GeV.
Differential cross section for the W range 2.25 to 2.26 GeV.
Differential cross section for the W range 2.26 to 2.27 GeV.
Differential cross section for the W range 2.27 to 2.28 GeV.
Differential cross section for the W range 2.28 to 2.29 GeV.
Differential cross section for the W range 2.29 to 2.30 GeV.
Differential cross section for the W range 2.30 to 2.31 GeV.
Differential cross section for the W range 2.31 to 2.32 GeV.
Differential cross section for the W range 2.32 to 2.33 GeV.
Differential cross section for the W range 2.33 to 2.34 GeV.
Differential cross section for the W range 2.34 to 2.35 GeV.
Differential cross section for the W range 2.35 to 2.36 GeV.
Differential cross section for the W range 2.36 to 2.37 GeV.
Differential cross section for the W range 2.37 to 2.38 GeV.
Differential cross section for the W range 2.38 to 2.39 GeV.
Differential cross section for the W range 2.39 to 2.40 GeV.
Differential cross section for the W range 2.40 to 2.41 GeV.
Differential cross section for the W range 2.41 to 2.42 GeV.
Differential cross section for the W range 2.42 to 2.43 GeV.
Differential cross section for the W range 2.43 to 2.44 GeV.
Differential cross section for the W range 2.44 to 2.45 GeV.
Differential cross section for the W range 2.45 to 2.46 GeV.
Differential cross section for the W range 2.46 to 2.47 GeV.
Differential cross section for the W range 2.47 to 2.48 GeV.
Differential cross section for the W range 2.48 to 2.49 GeV.
Differential cross section for the W range 2.49 to 2.50 GeV.
Differential cross section for the W range 2.50 to 2.51 GeV.
Differential cross section for the W range 2.51 to 2.52 GeV.
Differential cross section for the W range 2.52 to 2.53 GeV.
Differential cross section for the W range 2.53 to 2.54 GeV.
Differential cross section for the W range 2.54 to 2.55 GeV.
Differential cross section for the W range 2.55 to 2.56 GeV.
Differential cross section for the W range 2.56 to 2.57 GeV.
Differential cross section for the W range 2.57 to 2.58 GeV.
Differential cross section for the W range 2.58 to 2.59 GeV.
Differential cross section for the W range 2.59 to 2.60 GeV.
Differential cross section for the W range 2.60 to 2.61 GeV.
Differential cross section for the W range 2.61 to 2.62 GeV.
Differential cross section for the W range 2.62 to 2.63 GeV.
Differential cross section for the W range 2.63 to 2.64 GeV.
Differential cross section for the W range 2.64 to 2.65 GeV.
Differential cross section for the W range 2.65 to 2.66 GeV.
Differential cross section for the W range 2.66 to 2.67 GeV.
Differential cross section for the W range 2.67 to 2.68 GeV.
Differential cross section for the W range 2.68 to 2.69 GeV.
Differential cross section for the W range 2.69 to 2.70 GeV.
Differential cross section for the W range 2.70 to 2.71 GeV.
Differential cross section for the W range 2.71 to 2.72 GeV.
Differential cross section for the W range 2.72 to 2.73 GeV.
Differential cross section for the W range 2.75 to 2.76 GeV.
Differential cross section for the W range 2.76 to 2.77 GeV.
Differential cross section for the W range 2.77 to 2.78 GeV.
Differential cross section for the W range 2.78 to 2.79 GeV.
Differential cross section for the W range 2.79 to 2.80 GeV.
Differential cross section for the W range 2.80 to 2.81 GeV.
Differential cross section for the W range 2.81 to 2.82 GeV.
Differential cross section for the W range 2.82 to 2.83 GeV.
Differential cross section for the W range 2.83 to 2.84 GeV.
Spin density matrix elements for the W range 1.72 to 1.73 GeV.
Spin density matrix elements for the W range 1.73 to 1.74 GeV.
Spin density matrix elements for the W range 1.74 to 1.75 GeV.
Spin density matrix elements for the W range 1.75 to 1.76 GeV.
Spin density matrix elements for the W range 1.76 to 1.77 GeV.
Spin density matrix elements for the W range 1.77 to 1.78 GeV.
Spin density matrix elements for the W range 1.78 to 1.79 GeV.
Spin density matrix elements for the W range 1.79 to 1.80 GeV.
Spin density matrix elements for the W range 1.80 to 1.81 GeV.
Spin density matrix elements for the W range 1.81 to 1.82 GeV.
Spin density matrix elements for the W range 1.82 to 1.83 GeV.
Spin density matrix elements for the W range 1.83 to 1.84 GeV.
Spin density matrix elements for the W range 1.84 to 1.85 GeV.
Spin density matrix elements for the W range 1.85 to 1.86 GeV.
Spin density matrix elements for the W range 1.86 to 1.87 GeV.
Spin density matrix elements for the W range 1.87 to 1.88 GeV.
Spin density matrix elements for the W range 1.88 to 1.89 GeV.
Spin density matrix elements for the W range 1.89 to 1.90 GeV.
Spin density matrix elements for the W range 1.90 to 1.91 GeV.
Spin density matrix elements for the W range 1.91 to 1.92 GeV.
Spin density matrix elements for the W range 1.92 to 1.93 GeV.
Spin density matrix elements for the W range 1.93 to 1.94 GeV.
Spin density matrix elements for the W range 1.94 to 1.95 GeV.
Spin density matrix elements for the W range 1.95 to 1.96 GeV.
Spin density matrix elements for the W range 1.96 to 1.97 GeV.
Spin density matrix elements for the W range 1.97 to 1.98 GeV.
Spin density matrix elements for the W range 1.98 to 1.99 GeV.
Spin density matrix elements for the W range 1.99 to 2.00 GeV.
Spin density matrix elements for the W range 2.00 to 2.01 GeV.
Spin density matrix elements for the W range 2.01 to 2.02 GeV.
Spin density matrix elements for the W range 2.02 to 2.03 GeV.
Spin density matrix elements for the W range 2.03 to 2.04 GeV.
Spin density matrix elements for the W range 2.04 to 2.05 GeV.
Spin density matrix elements for the W range 2.05 to 2.06 GeV.
Spin density matrix elements for the W range 2.06 to 2.07 GeV.
Spin density matrix elements for the W range 2.07 to 2.08 GeV.
Spin density matrix elements for the W range 2.08 to 2.09 GeV.
Spin density matrix elements for the W range 2.09 to 2.10 GeV.
Spin density matrix elements for the W range 2.10 to 2.11 GeV.
Spin density matrix elements for the W range 2.11 to 2.12 GeV.
Spin density matrix elements for the W range 2.12 to 2.13 GeV.
Spin density matrix elements for the W range 2.13 to 2.14 GeV.
Spin density matrix elements for the W range 2.14 to 2.15 GeV.
Spin density matrix elements for the W range 2.15 to 2.16 GeV.
Spin density matrix elements for the W range 2.16 to 2.17 GeV.
Spin density matrix elements for the W range 2.17 to 2.18 GeV.
Spin density matrix elements for the W range 2.18 to 2.19 GeV.
Spin density matrix elements for the W range 2.19 to 2.20 GeV.
Spin density matrix elements for the W range 2.20 to 2.21 GeV.
Spin density matrix elements for the W range 2.21 to 2.22 GeV.
Spin density matrix elements for the W range 2.22 to 2.23 GeV.
Spin density matrix elements for the W range 2.23 to 2.24 GeV.
Spin density matrix elements for the W range 2.24 to 2.25 GeV.
Spin density matrix elements for the W range 2.25 to 2.26 GeV.
Spin density matrix elements for the W range 2.26 to 2.27 GeV.
Spin density matrix elements for the W range 2.27 to 2.28 GeV.
Spin density matrix elements for the W range 2.28 to 2.29 GeV.
Spin density matrix elements for the W range 2.29 to 2.30 GeV.
Spin density matrix elements for the W range 2.30 to 2.31 GeV.
Spin density matrix elements for the W range 2.31 to 2.32 GeV.
Spin density matrix elements for the W range 2.32 to 2.33 GeV.
Spin density matrix elements for the W range 2.33 to 2.34 GeV.
Spin density matrix elements for the W range 2.34 to 2.35 GeV.
Spin density matrix elements for the W range 2.35 to 2.36 GeV.
Spin density matrix elements for the W range 2.36 to 2.37 GeV.
Spin density matrix elements for the W range 2.37 to 2.38 GeV.
Spin density matrix elements for the W range 2.38 to 2.39 GeV.
Spin density matrix elements for the W range 2.39 to 2.40 GeV.
Spin density matrix elements for the W range 2.40 to 2.41 GeV.
Spin density matrix elements for the W range 2.41 to 2.42 GeV.
Spin density matrix elements for the W range 2.42 to 2.43 GeV.
Spin density matrix elements for the W range 2.43 to 2.44 GeV.
Spin density matrix elements for the W range 2.44 to 2.45 GeV.
Spin density matrix elements for the W range 2.45 to 2.46 GeV.
Spin density matrix elements for the W range 2.46 to 2.47 GeV.
Spin density matrix elements for the W range 2.47 to 2.48 GeV.
Spin density matrix elements for the W range 2.48 to 2.49 GeV.
Spin density matrix elements for the W range 2.49 to 2.50 GeV.
Spin density matrix elements for the W range 2.50 to 2.51 GeV.
Spin density matrix elements for the W range 2.51 to 2.52 GeV.
Spin density matrix elements for the W range 2.52 to 2.53 GeV.
Spin density matrix elements for the W range 2.53 to 2.54 GeV.
Spin density matrix elements for the W range 2.54 to 2.55 GeV.
Spin density matrix elements for the W range 2.55 to 2.56 GeV.
Spin density matrix elements for the W range 2.56 to 2.57 GeV.
Spin density matrix elements for the W range 2.57 to 2.58 GeV.
Spin density matrix elements for the W range 2.58 to 2.59 GeV.
Spin density matrix elements for the W range 2.59 to 2.60 GeV.
Spin density matrix elements for the W range 2.60 to 2.61 GeV.
Spin density matrix elements for the W range 2.61 to 2.62 GeV.
Spin density matrix elements for the W range 2.62 to 2.63 GeV.
Spin density matrix elements for the W range 2.63 to 2.64 GeV.
Spin density matrix elements for the W range 2.64 to 2.65 GeV.
Spin density matrix elements for the W range 2.65 to 2.66 GeV.
Spin density matrix elements for the W range 2.66 to 2.67 GeV.
Spin density matrix elements for the W range 2.67 to 2.68 GeV.
Spin density matrix elements for the W range 2.68 to 2.69 GeV.
Spin density matrix elements for the W range 2.69 to 2.70 GeV.
Spin density matrix elements for the W range 2.70 to 2.71 GeV.
Spin density matrix elements for the W range 2.71 to 2.72 GeV.
Spin density matrix elements for the W range 2.72 to 2.73 GeV.
Spin density matrix elements for the W range 2.73 to 2.74 GeV.
Spin density matrix elements for the W range 2.74 to 2.75 GeV.
Spin density matrix elements for the W range 2.75 to 2.76 GeV.
Spin density matrix elements for the W range 2.76 to 2.77 GeV.
Spin density matrix elements for the W range 2.77 to 2.78 GeV.
Spin density matrix elements for the W range 2.78 to 2.79 GeV.
Spin density matrix elements for the W range 2.79 to 2.80 GeV.
Spin density matrix elements for the W range 2.80 to 2.81 GeV.
Spin density matrix elements for the W range 2.81 to 2.82 GeV.
Spin density matrix elements for the W range 2.82 to 2.83 GeV.
Spin density matrix elements for the W range 2.83 to 2.84 GeV.
The exclusive reaction $\gamma p \to p \pi^+ \pi^-$ was studied in the photon energy range 3.0 - 3.8 GeV and momentum transfer range $0.4<-t<1.0$ GeV$^2$. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range the integrated luminosity was about 20 pb$^{-1}$. The reaction was isolated by detecting the $\pi^+$ and proton in CLAS, and reconstructing the $\pi^-$ via the missing-mass technique. Moments of the di-pion decay angular distributions were derived from the experimental data. Differential cross sections for the $S$, $P$, and $D$-waves in the $M_{\pi^+\pi^-}$ mass range $0.4-1.4$ GeV were derived performing a partial wave expansion of the extracted moments. Besides the dominant contribution of the $\rho(770)$ meson in the $P$-wave, evidence for the $f_0(980)$ and the $f_2(1270)$ mesons was found in the $S$ and $D$-waves, respectively. The differential production cross sections $d\sigma/dt$ for individual waves in the mass range of the above-mentioned mesons were extracted. This is the first time the $f_0(980)$ has been measured in a photoproduction experiment.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
S wave cross section for -T.
S wave cross section for -T.
S wave cross section for -T.
S wave cross section for -T.
S wave cross section for -T.
S wave cross section for -T.
P wave cross section for -T.
P wave cross section for -T.
P wave cross section for -T.
P wave cross section for -T.
P wave cross section for -T.
P wave cross section for -T.
Pm wave cross section for -T.
Pm wave cross section for -T.
Pm wave cross section for -T.
Pm wave cross section for -T.
Pm wave cross section for -T.
Pm wave cross section for -T.
P0 wave cross section for -T.
P0 wave cross section for -T.
P0 wave cross section for -T.
P0 wave cross section for -T.
P0 wave cross section for -T.
P0 wave cross section for -T.
Pp wave cross section for -T.
Pp wave cross section for -T.
Pp wave cross section for -T.
Pp wave cross section for -T.
Pp wave cross section for -T.
Pp wave cross section for -T.
D wave cross section for -T.
D wave cross section for -T.
D wave cross section for -T.
D wave cross section for -T.
D wave cross section for -T.
D wave cross section for -T.
Dm wave cross section for -T.
Dm wave cross section for -T.
Dm wave cross section for -T.
Dm wave cross section for -T.
Dm wave cross section for -T.
Dm wave cross section for -T.
D0 wave cross section for -T.
D0 wave cross section for -T.
D0 wave cross section for -T.
D0 wave cross section for -T.
D0 wave cross section for -T.
D0 wave cross section for -T.
Dp wave cross section for -T.
Dp wave cross section for -T.
Dp wave cross section for -T.
Dp wave cross section for -T.
Dp wave cross section for -T.
Dp wave cross section for -T.
F wave cross section for -T.
F wave cross section for -T.
F wave cross section for -T.
F wave cross section for -T.
F wave cross section for -T.
F wave cross section for -T.
Fm wave cross section for -T.
Fm wave cross section for -T.
Fm wave cross section for -T.
Fm wave cross section for -T.
Fm wave cross section for -T.
Fm wave cross section for -T.
F0 wave cross section for -T.
F0 wave cross section for -T.
F0 wave cross section for -T.
F0 wave cross section for -T.
F0 wave cross section for -T.
F0 wave cross section for -T.
Fp wave cross section for -T.
Fp wave cross section for -T.
Fp wave cross section for -T.
Fp wave cross section for -T.
Fp wave cross section for -T.
Fp wave cross section for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Mean values and differential distributions of event-shape variables have been studied in neutral current deep inelastic scattering using an integrated {luminosity} of 82.2 pb$^{-1}$ collected with the ZEUS detector at HERA. The kinematic range was $80 < Q^2 < 20 480\gev^2$ and $0.0024 < x < 0.6$, where $Q^2$ is the virtuality of the exchanged boson and $x$ is the Bjorken variable. The data are compared with a model based on a combination of next-to-leading-order QCD calculations with next-to-leading-logarithm corrections and the Dokshitzer-Webber non-perturbative power corrections. The power-correction method provides a reasonable description of the data for all event-shape variables studied. Nevertheless, the lack of consistency of the determination of $\alpha_s$ and of the non-perturbative parameter of the model, $\albar$, suggests the importance of higher-order processes that are not yet included in the model.
Mean value of the event shape variable 1-THRUST(C=T).
Mean value of the event shape variable B(C=T).
Mean value of the event shape variable RHO**2.
Mean value of the event shape variable C-PARAM.
Mean value of the event shape variable 1-THRUST(C=G).
Mean value of the event shape variable B(C=G).
Differential distribution for event shape RHO**2 corrected to the hadron level for the Q**2 range 80 TO 160 GeV**2.
Differential distribution for event shape RHO**2 corrected to the hadron level for the Q**2 range 160 TO 320 GeV**2.
Differential distribution for event shape RHO**2 corrected to the hadron level for the Q**2 range 320 TO 640 GeV**2.
Differential distribution for event shape RHO**2 corrected to the hadron level for the Q**2 range 640 TO 1280 GeV**2.
Differential distribution for event shape RHO**2 corrected to the hadron level for the Q**2 range 1280 TO 2560 GeV**2.
Differential distribution for event shape RHO**2 corrected to the hadron level for the Q**2 range 2560 TO 5120 GeV**2.
Differential distribution for event shape RHO**2 corrected to the hadron level for the Q**2 range 5120 TO 10240 GeV**2.
Differential distribution for event shape RHO**2 corrected to the hadron level for the Q**2 range 10240 TO 20480 GeV**2.
Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 80 TO 160 GeV**2.
Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 160 TO 320 GeV**2.
Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 320 TO 640 GeV**2.
Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 640 TO 1280 GeV**2.
Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 1280 TO 2560 GeV**2.
Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 2560 TO 5120 GeV**2.
Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 5120 TO 10240 GeV**2.
Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 10240 TO 20480 GeV**2.
Differential distribution for event shape THRUST(C=T) corrected to the hadron level for the Q**2 range 80 TO 160 GeV**2.
Differential distribution for event shape THRUST(C=T) corrected to the hadron level for the Q**2 range 160 TO 320 GeV**2.
Differential distribution for event shape THRUST(C=T) corrected to the hadron level for the Q**2 range 320 TO 640 GeV**2.
Differential distribution for event shape THRUST(C=T) corrected to the hadron level for the Q**2 range 640 TO 1280 GeV**2.
Differential distribution for event shape THRUST(C=T) corrected to the hadron level for the Q**2 range 1280 TO 2560 GeV**2.
Differential distribution for event shape THRUST(C=T) corrected to the hadron level for the Q**2 range 2560 TO 5120 GeV**2.
Differential distribution for event shape THRUST(C=T) corrected to the hadron level for the Q**2 range 5120 TO 10240 GeV**2.
Differential distribution for event shape THRUST(C=T) corrected to the hadron level for the Q**2 range 10240 TO 20480 GeV**2.
Differential distribution for event shape B(C=T) corrected to the hadron level for the Q**2 range 80 TO 160 GeV**2.
Differential distribution for event shape B(C=T) corrected to the hadron level for the Q**2 range 160 TO 320 GeV**2.
Differential distribution for event shape B(C=T) corrected to the hadron level for the Q**2 range 320 TO 640 GeV**2.
Differential distribution for event shape B(C=T) corrected to the hadron level for the Q**2 range 640 TO 1280 GeV**2.
Differential distribution for event shape B(C=T) corrected to the hadron level for the Q**2 range 1280 TO 2560 GeV**2.
Differential distribution for event shape B(C=T) corrected to the hadron level for the Q**2 range 2560 TO 5120 GeV**2.
Differential distribution for event shape B(C=T) corrected to the hadron level for the Q**2 range 5120 TO 10240 GeV**2.
Differential distribution for event shape B(C=T) corrected to the hadron level for the Q**2 range 10240 TO 20480 GeV**2.
Differential distribution for event shape THRUST(C=G) corrected to the hadron level for the Q**2 range 80 TO 160 GeV**2.
Differential distribution for event shape THRUST(C=G) corrected to the hadron level for the Q**2 range 160 TO 320 GeV**2.
Differential distribution for event shape THRUST(C=G) corrected to the hadron level for the Q**2 range 320 TO 640 GeV**2.
Differential distribution for event shape THRUST(C=G) corrected to the hadron level for the Q**2 range 640 TO 1280 GeV**2.
Differential distribution for event shape THRUST(C=G) corrected to the hadron level for the Q**2 range 1280 TO 2560 GeV**2.
Differential distribution for event shape THRUST(C=G) corrected to the hadron level for the Q**2 range 2560 TO 5120 GeV**2.
Differential distribution for event shape THRUST(C=G) corrected to the hadron level for the Q**2 range 5120 TO 10240 GeV**2.
Differential distribution for event shape THRUST(C=G) corrected to the hadron level for the Q**2 range 10240 TO 20480 GeV**2.
Differential distribution for event shape B(C=G) corrected to the hadron level for the Q**2 range 80 TO 160 GeV**2.
Differential distribution for event shape B(C=G) corrected to the hadron level for the Q**2 range 160 TO 320 GeV**2.
Differential distribution for event shape B(C=G) corrected to the hadron level for the Q**2 range 320 TO 640 GeV**2.
Differential distribution for event shape B(C=G) corrected to the hadron level for the Q**2 range 640 TO 1280 GeV**2.
Differential distribution for event shape B(C=G) corrected to the hadron level for the Q**2 range 1280 TO 2560 GeV**2.
Differential distribution for event shape B(C=G) corrected to the hadron level for the Q**2 range 2560 TO 5120 GeV**2.
Differential distribution for event shape B(C=G) corrected to the hadron level for the Q**2 range 5120 TO 10240 GeV**2.
Differential distribution for event shape B(C=G) corrected to the hadron level for the Q**2 range 10240 TO 20480 GeV**2.
Differential distribution for event shape Y2 corrected to the hadron level for the Q**2 range 80 TO 160 GeV**2.
Differential distribution for event shape Y2 corrected to the hadron level for the Q**2 range 160 TO 320 GeV**2.
Differential distribution for event shape Y2 corrected to the hadron level for the Q**2 range 320 TO 640 GeV**2.
Differential distribution for event shape Y2 corrected to the hadron level for the Q**2 range 640 TO 1280 GeV**2.
Differential distribution for event shape Y2 corrected to the hadron level for the Q**2 range 1280 TO 2560 GeV**2.
Differential distribution for event shape Y2 corrected to the hadron level for the Q**2 range 2560 TO 5120 GeV**2.
Differential distribution for event shape Y2 corrected to the hadron level for the Q**2 range 5120 TO 10240 GeV**2.
Differential distribution for event shape Y2 corrected to the hadron level for the Q**2 range 10240 TO 20480 GeV**2.
Differential distribution for event shape (KOUT/Q) corrected to the hadron level for the Q**2 range 80 TO 160 GeV**2.
Differential distribution for event shape (KOUT/Q) corrected to the hadron level for the Q**2 range 160 TO 320 GeV**2.
Differential distribution for event shape (KOUT/Q) corrected to the hadron level for the Q**2 range 320 TO 640 GeV**2.
Differential distribution for event shape (KOUT/Q) corrected to the hadron level for the Q**2 range 640 TO 1280 GeV**2.
Differential distribution for event shape (KOUT/Q) corrected to the hadron level for the Q**2 range 1280 TO 2560 GeV**2.
Differential distribution for event shape (KOUT/Q) corrected to the hadron level for the Q**2 range 2560 TO 5120 GeV**2.
Differential distribution for event shape (KOUT/Q) corrected to the hadron level for the Q**2 range 5120 TO 10240 GeV**2.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.