The differential cross section for elastic scattering of positive pions on protons has been measured at a nominal incident-meson kinetic energy of 250 MeV. The angular range covered in the center of mass by the 13 data was 14.9° to 160°. The fractional rms errors were typically 1.5%. A liquid-hydrogen target was bombarded by a beam of 2.5×106 mesons/sec. The scattered pions were detected by a counter telescope. Recoil protons were eliminated by means of a Čerenkov counter. A phase-shift analysis was performed combining the above-mentioned data with the recoil-proton polarization measurements taken recently with the help of a polarized proton target. Only one acceptable SPD Fermi-type phase-shift set was found. When F waves were included, a total of three possible phase-shift solutions emerged from the analysis. However, arguments based on the data could still be made to eliminate all but one phase-shift set. On the other hand, the remaining phase-shift set, similar in type to the SPD solution, suffers from the disadvantage of large rms errors assigned to its small phase shifts.
No description provided.
The polarization parameter in elastic π−p scattering has been measured, at the Berkeley 184-in. synchrocyclotron, with the use of a polarized proton target. At 318-, 337-, and 390-MeV incident pion kinetic energy, the angular range from 70° to 180° in the center-of-mass system was covered. At 229 MeV, polarization measurements were made in the angular range 150° to 180°. Phase-shift analyses, using these and other published data, were made at the two lowest energies.
No description provided.
No description provided.
No description provided.
None
No description provided.
An experiment designed to study the π−p total neutral cross section and its breakdown into several channels has been performed at eleven incident pion momenta ranging from 654 to 1247 MeV/c. Angular distributions for the charge exchange π0 and for η0 production are given in terms of Legendre-polynomial expansion coefficients. Forward and backward differential cross sections are presented for the charge-exchange channel and comparisons with recent dispersion-relation predictions for the forward cross section are made.
No description provided.
No description provided.
No description provided.
Differential cross sections for π + p and π − p elastic scattering have been measured with an accuracy of typically ±2% at 10 and 9 energies respectively in the range 88 to 292 MeV of lab kinetic energy.
No description provided.
No description provided.
No description provided.
The reaction π-p→pωπ- has been studied at 9.1 GeV/c, its total cross-section is σ=(123±22) μb. The pB− and the quasi-three-body channels contribute with cross-section of σ=(24±7) μb and σ=(94±23) μb, respectively. The main features of the quasi-three-body pωπ- channel, displayed by some techniques of data presentation, are satisfactorily described by a double-Regge-pole model. In this model pomeron-meson and meson-meson exchanges are taken into account. An OPE modelà la Veneziano predicts a total cross-section too high and reproduces very poorly the observed features.
BREIT-WIGNER PLUS BACKGROUND FITS FOR B(1235)- AND OMEGA MESONS.
None
No description provided.
The polarization parameter for the reaction π−p→π0n has been measured at five incident been momenta between 1.03 and GeV/c. The results are compared with predictions of recent phase-shift analyses.
.
.
.
Results are reported based on a study of π − p interactions at 147 GeV/ c in the FERMILAB 30-inch Proportional Wire Hybrid Bubble Chamber System. We have measured the topological cross sections and separated two-prong elastic and inelastic channels. In addition, we have extracted leading particle cross sections using the increased momentum resolution of the downstream proportional wire chambers. We have compared our results with experiments and predictions of a simple fragmentation hyphothesis.
No description provided.
The reactions of positive pions with protons yielding four charged particles and one or more neutrals have been studied, especially the reaction π+p→Δ++ω0→pπ+π+π−π0. The results presented in this paper were obtained from a 100 000-picture exposure of the Argonne-MURA 30-in. liquid hydrogen bubble chamber, with a beam of incident pions of 4.09−GeVc momentum. Comparisons have been made with corresponding results of other experiments at various incident beam momenta, and with the predictions of some theoretical models of the π+p interaction.
INCLUDING CORRECTIONS FOR BACKGROUND.
No description provided.
No description provided.