A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. The 95% confidence level upper limit set on the branching fraction of the 125 GeV Higgs boson to invisible particles, $\mathcal{B}$(H $\to$ inv), is 0.54 (0.39 expected), assuming standard model production cross sections. The results of this analysis are combined with previous $\mathcal{B}$(H $\to$ inv) searches carried out at $\sqrt{s}$ = 7, 8, and 13 TeV in complementary production modes. The combined upper limit at 95% confidence level on $\mathcal{B}$(H $\to$ inv) is 0.15 (0.08 expected).
Observed and expected 95% CL upper limits on ${{(\sigma_{\text{H}}/\sigma_{\text{H}}^{\mathrm{SM}}) \times {{\mathcal{B}(\text{H} \to \text{inv})}}}}$ for hadronic final states of ttH and resolved VH channels, and their combination, using data from 2016--2018 and assuming a SM Higgs boson with a mass of 125 GeV.
Observed and expected 95% CL upper limits on ${{(\sigma_{\text{H}}/\sigma_{\text{H}}^{\mathrm{SM}}) \times {{\mathcal{B}(\text{H} \to \text{inv})}}}}$ for the VBF, ttH, VH and ggH channels using all available CMS data, and their combination, assuming a SM Higgs boson with a mass of 125 GeV.
Observed and expected 95% CL upper limits on ${{(\sigma_{\text{H}}/\sigma_{\text{H}}^{\mathrm{SM}}) \times {{\mathcal{B}(\text{H} \to \text{inv})}}}}$ for the VBF, ttH, VH and ggH channels using Run2 CMS data, and their combination, assuming a SM Higgs boson with a mass of 125 GeV.
This article presents the results of two studies of Higgs boson properties using the $WW^*(\rightarrow e\nu\mu\nu)jj$ final state, based on a dataset corresponding to 36.1/fb of $\sqrt{s}$=13 TeV proton$-$proton collisions recorded by the ATLAS experiment at the Large Hadron Collider. The first study targets Higgs boson production via gluon$-$gluon fusion and constrains the CP properties of the effective Higgs$-$gluon interaction. Using angular distributions and the overall rate, a value of $\tan(\alpha) = 0.0 \pm 0.4$ stat. $ \pm 0.3$ syst is obtained for the tangent of the mixing angle for CP-even and CP-odd contributions. The second study exploits the vector-boson fusion production mechanism to probe the Higgs boson couplings to longitudinally and transversely polarised $W$ and $Z$ bosons in both the production and the decay of the Higgs boson; these couplings have not been directly constrained previously. The polarisation-dependent coupling-strength scale factors are defined as the ratios of the measured polarisation-dependent coupling strengths to those predicted by the Standard Model, and are determined using rate and kinematic information to be $a_L=0.91^{+0.10}_{-0.18}$(stat.)$^{+0.09}_{-0.17}$(syst.) and $a_{T}=1.2 \pm 0.4 $(stat.)$ ^{+0.2}_{-0.3} $(syst.). These coupling strengths are translated into pseudo-observables, resulting in $\kappa_{VV}= 0.91^{+0.10}_{-0.18}$(stat.)$^{+0.09}_{-0.17}$(syst.) and $\epsilon_{VV} =0.13^{+0.28}_{-0.20}$ (stat.)$^{+0.08}_{-0.10}$(syst.). All results are consistent with the Standard Model predictions.
Post-fit NFs and their uncertainties for the Z+jets, top and WW backgrounds. Both sets of normalisation factors differ slightly depending on which (B)SM model is tested, but are consistent within their total uncertainties.
Post-fit event yields in the signal and control regions obtained from the study of the signal strength parameter $\mu^{\text{ggF+2jets}}$. The quoted uncertainties include the theoretical and experimental systematic sources and those due to sample statistics. The fit constrains the total expected yield to the observed yield. The diboson background is split into $W W$ and non-$W W$ contributions.
Breakdown of the main contributions to the total uncertainty on $\tan \alpha$ based on the fit that exploits both shape and rate information. Individual sources of systematic uncertainty are grouped into either the theoretical or the experimental uncertainty. The sum in quadrature of the individual components differs from the total uncertainty due to correlations between the components.