A measurement of the inclusive $W \to \mu\nu$ production cross-section using data from $pp$ collisions at a centre-of-mass energy of $\sqrt{s} = 7 {\rm \, TeV}$ is presented. The analysis is based on an integrated luminosity of about $1.0 {\rm \, fb}^{-1}$ recorded with the LHCb detector. Results are reported for muons with a transverse momentum greater than $20 {\rm \, Ge\kern -0.1em V\!/}c$ and pseudorapidity between 2.0 and 4.5. The $W^{+}$ and $W^{-}$ production cross-sections are measured to be $$\sigma_{W^{+} \to \mu^{+}\nu} = 861.0 \pm 2.0 \pm 11.2 \pm 14.7 {\rm \, pb},$$ $$\sigma_{W^{-} \to \mu^{-}\overline{\nu}} = 675.8 \pm 1.9 \pm 8.8 \pm 11.6 {\rm \, pb},$$ where the first uncertainty is statistical, the second is systematic and the third is due to the luminosity determination. Cross-section ratios and differential distributions as functions of the muon pseudorapidity are also presented. The ratio of $W^{+}$ to $W^{-}$ cross-sections in the same fiducial kinematic region is determined to be $$\frac{\sigma_{W^{+} \to \mu^{+}\nu}}{\sigma_{W^{-} \to \mu^{-}\overline{\nu}}} = 1.274 \pm 0.005 \pm 0.009,$$ where the uncertainties are statistical and systematic, respectively. Results are in good agreement with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics.
Correction for final state radiation for $W^+ \rightarrow \mu^+\nu$ and $W^- \rightarrow \mu^-\bar{\nu}$ in bins of muon pseudorapidity. No loss due FSR is observed for $W^-$ in the last pseudorapidity bin because of lack of statistics.
Inclusive cross-section for $W^+$ and $W^-$ boson production in bins of muon pseudorapidity. The uncertainties are statistical, systematic and luminosity.
Ratio of $W^+$ to $W^-$ cross-section in bins of muon pseudorapidity. The uncertainties are statistical and systematic.
A search for neutral Higgs bosons in the minimal supersymmetric extension of the standard model (MSSM) decaying to tau-lepton pairs in pp collisions is performed, using events recorded by the CMS experiment at the LHC. The dataset corresponds to an integrated luminosity of 24.6 fb$^{-1}$, with 4.9 fb$^{-1}$ at 7 TeV and 19.7 fb$^{-1}$ at 8 TeV. To enhance the sensitivity to neutral MSSM Higgs bosons, the search includes the case where the Higgs boson is produced in association with a b-quark jet. No excess is observed in the tau-lepton-pair invariant mass spectrum. Exclusion limits are presented in the MSSM parameter space for different benchmark scenarios, $m_\mathrm{h}^\text{max}$, $m_\mathrm{h}^{\text{mod}+}$, $m_\mathrm{h}^{\text{mod}-}$, light-stop, light-stau, $\tau$-phobic, and low-$m_\mathrm{H}$. Upper limits on the cross section times branching fraction for gluon fusion and b-quark associated Higgs boson production are also given.
likelihood scan of the (gg$\rightarrow\phi\rightarrow\tau\tau$) - (gg$\rightarrow$bb$\phi\rightarrow\tau\tau$) - plane the with 40000 grid points at each hypothetical higgs mass, m$_\phi$, at $\sqrt{s}$ = 8 TeV testing the observation against a background hypothesis not including the Standard Model Higgs boson at 125 GeV.
likelihood scan of the (gg$\rightarrow\phi\rightarrow\tau\tau$) - (gg$\rightarrow$bb$\phi\rightarrow\tau\tau$) - plane the with 40000 grid points at each hypothetical higgs mass, m$_\phi$, at $\sqrt{s}$ = 8 TeV testing the $\textbf{asimov dataset of the sum of all backgrounds not including the Standard Model Higgs boson at 125 GeV against a background hypothesis not including the Standard Model Higgs boson at 125 GeV}.
likelihood scan of the (gg$\rightarrow\phi\rightarrow\tau\tau$) - (gg$\rightarrow$bb$\phi\rightarrow\tau\tau$) - plane the with 40000 grid points at each hypothetical higgs mass, m$_\phi$, at $\sqrt{s}$ = 8 TeV testing the observation against a background hypothesis including the Standard Model Higgs boson at 125 GeV.
Measurements of differential cross sections are presented for the production of a Z boson and at least one hadronic jet in proton-proton collisions at sqrt(s) = 7 TeV, recorded by the CMS detector, using a data sample corresponding to an integrated luminosity of 4.9 inverse femtobarns. The jet multiplicity distribution is measured for up to six jets. The differential cross sections are measured as a function of jet transverse momentum and pseudorapidity for the four highest transverse momentum jets. The distribution of the scalar sum of jet transverse momenta is also measured as a function of the jet multiplicity. The measurements are compared with theoretical predictions at leading and next-to-leading order in perturbative QCD.
The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 6.
The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 6.
The cross section measurement as a function of the transverse momentum of the leading jet.
A search for pair production of third-generation scalar leptoquarks and supersymmetric top quark partners, top squarks, in final states involving tau leptons and bottom quarks is presented. The search uses events from a data sample of proton-proton collisions corresponding to an integrated luminosity of 19.7 inverse femtobarns, collected with the CMS detector at the LHC with sqrt(s) = 8 TeV. The number of observed events is found to be in agreement with the expected standard model background. Third-generation scalar leptoquarks with masses below 740 GeV are excluded at 95% confidence level, assuming a 100% branching fraction for the leptoquark decay to a tau lepton and a bottom quark. In addition, this mass limit applies directly to top squarks decaying via an R-parity violating coupling lambda'[333]. The search also considers a similar signature from top squarks undergoing a chargino-mediated decay involving the R-parity violating coupling lambda'[3jk]. Each top squark decays to a tau lepton, a bottom quark, and two light quarks. Top squarks in this model with masses below 580 GeV are excluded at 95% confidence level. The constraint on the leptoquark mass is the most stringent to date, and this is the first search for top squarks decaying via lambda'[3jk].
The estimated backgrounds, observed event yields, and expected number of signal events for the leptoquark search. For the simulation-based entries, the statistical and systematic uncertainties are shown separately, in that order.
The estimated backgrounds, observed event yields, and expected number of signal events for the top squark search. For the simulation-based entries, the statistical and systematic uncertainties are shown separately, in that order.
Selection efficiencies in % for the signal in the leptoquark search, estimated from the simulation.
A study of $\chi_{b}$ meson production at LHCb is performed on proton-proton collision data, corresponding to 3.0fb$^{-1}$ of integrated luminosity collected at centre-of-mass energies $\sqrt{s}=7$ and 8TeV. The fraction of $\Upsilon(nS)$ mesons originating from $\chi_{b}$ decays is measured as a function of the $\Upsilon$ transverse momentum in the rapidity range $2.0 < y^{\Upsilon} < 4.5$. The radiative transition of the $\chi_{b}(3P)$ meson to $\Upsilon(3S)$ is observed for the first time. The $\chi_{b1}(3P)$ mass is determined to be $$m(\chi_{b1}(3P)) = 10\,511.3 \pm 1.7 \pm 2.5 MeV/c^2,$$ where the first uncertainty is statistical and the second is systematic.
Fractions $R_{\Upsilon(1S)}^{\chi_{b}(mP)}$ in bins of $p_{\mathrm{T}}^{\Upsilon}$, measured for data collected at $\sqrt{s}= 7$ TeV.
Fractions $R_{\Upsilon(2S)}^{\chi_{b}(mP)}$ in bins of $p_{\mathrm{T}}^{\Upsilon}$, measured for data collected at $\sqrt{s}= 7$ TeV.
Fractions $R_{\Upsilon(3S)}^{\chi_{b}(mP)}$ in bins of $p_{\mathrm{T}}^{\Upsilon}$, measured for data collected at $\sqrt{s}= 7$ TeV.
Event-shape variables, which are sensitive to perturbative and nonperturbative aspects of quantum chromodynamic (QCD) interactions, are studied in multijet events recorded in proton-proton collisions at sqrt(s) = 7 TeV. Events are selected with at least one jet with transverse momentum pt > 110 GeV and pseudorapidity abs(eta) < 2.4, in a data sample corresponding to integrated luminosities of up to 5 inverse femtobarns. The distributions of five event-shape variables in various leading jet pt ranges are compared to predictions from different QCD Monte Carlo event generators.
Transverse thrust for $110 < p_{T,1} < 170$ GeV.
Transverse thrust for $170 < p_{T,1} < 250$ GeV.
Transverse thrust for $250 < p_{T,1} < 320$ GeV.
Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pt) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 inverse femtobarns. The measured cross sections are compared to predictions from Monte Carlo generators, MADGRAPH + PYTHIA and SHERPA, and to next-to-leading-order calculations from BLACKHAT + SHERPA. The differential cross sections are found to be in agreement with the predictions, apart from the pt distributions of the leading jets at high pt values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.
The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 6.
The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 6.
The differential cross section measurement as a function of the transverse momentum of the first leading jet.
Inclusive jet, dijet and trijet differential cross sections are measured in neutral current deep-inelastic scattering for exchanged boson virtualities 150 < Q^2 < 15000 GeV^2 using the H1 detector at HERA. The data were taken in the years 2003 to 2007 and correspond to an integrated luminosity of 351 pb^{-1}. Double differential Jet cross sections are obtained using a regularised unfolding procedure. They are presented as a function of Q^2 and the transverse momentum of the jet, P_T^jet, and as a function of Q^2 and the proton's longitudinal momentum fraction, Xi, carried by the parton participating in the hard interaction. In addition normalised double differential jet cross sections are measured as the ratio of the jet cross sections to the inclusive neutral current cross sections in the respective Q^2 bins of the jet measurements. Compared to earlier work, the measurements benefit from an improved reconstruction and calibration of the hadronic final state. The cross sections are compared to perturbative QCD calculations in next-to-leading order and are used to determine the running coupling and the value of the strong coupling constant as alpha_s(M_Z) = 0.1165 (8)_exp (38)_{pdf,theo}.
Double-differential inclusive jet cross sections measured as a function of Q**2 and PT(JET) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.5% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.
Double-differential dijet cross sections measured as a function of Q**2 and MEAN(PT(2JET)) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.
Double-differential dijet cross sections measured as a function of Q**2 and XI(2) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.
Production of prompt J/$\psi$ meson pairs in proton-proton collisions at $\sqrt{s}$ = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 inverse-femtobarns. The two J/$\psi$ mesons are fully reconstructed via their decays into $\mu^+\mu^-$ pairs. This observation provides for the first time access to the high-transverse-momentum region of J/$\psi$ pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/$\psi$ transverse momentum ($p_T^{J/\psi}$) and rapidity (|$y^{J/\psi}$|): |$y^{J/\psi}$| lower than 1.2 for $p_T^{J/\psi}$ greater than 6.5 GeV/c; |$y^{J/\psi}$| in [1.2,1.43] for a $p_T$ threshold that scales linearly with |$y^{J/\psi}$| from 6.5 to 4.5 GeV/c; and |$y^{J/\psi}$| in [1.43,2.2] for $p_T^{J/\psi}$ greater than 4.5 GeV/c. The total cross section, assuming unpolarized prompt J/$\psi$ pair production is 1.49 $\pm$ 0.07 (stat.) $\pm$ 0.13 (syst.) nb. Different assumptions about the J/$\psi$ polarization imply modifications to the cross section ranging from -31% to +27%.
Differential cross section D(SIG)/DM(J/PSI J/PSI) in bins of the J/PSI pair invariant mass, M(J/PSI J/PSI).
Differential cross section D(SIG)/DABS(DELTA(YRAP)) in bins of the absolute rapidity difference between J/PSI mesons, ABS(DELTA(YRAP)).
Differential cross section D(SIG)/DPT(J/PSI J/PSI) in bins of the transverse momentum of the J/PSI pair, PT(J/PSI J/PSI).
Measurements of the inclusive jet cross section with the anti-kt clustering algorithm are presented for two radius parameters, R=0.5 and 0.7. They are based on data from LHC proton-proton collisions at $\sqrt{s}$ = 7 TeV corresponding to an integrated luminosity of 5.0 inverse femtobarns collected with the CMS detector in 2011. The ratio of these two measurements is obtained as a function of the rapidity and transverse momentum of the jets. Significant discrepancies are found comparing the data to leading-order simulations and to fixed-order calculations at next-to-leading order, corrected for nonperturbative effects, whereas simulations with next-to-leading-order matrix elements matched to parton showers describe the data best.
Inclusive Jet cross section with R = 0.5 in the rapidity bin 0 < |y| < 0.5. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.
Inclusive Jet cross section with R = 0.5 in the rapidity bin 0.5 < |y| < 1. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.
Inclusive Jet cross section with R = 0.5 in the rapidity bin 1 < |y| < 1.5. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.