Pion, kaon, proton and anti-proton transverse momentum distributions from p + p and d + Au collisions at s(NN)**1/2 = 200-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 616 (2005) 8-16, 2005.
Inspire Record 628232 DOI 10.17182/hepdata.98859

Identified mid-rapidity particle spectra of $\pi^{\pm}$, $K^{\pm}$, and $p(\bar{p})$ from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor ($R_{dAu}$) between protons $(p+\bar{p})$ and charged hadrons ($h$) in the transverse momentum range $1.2<{p_{T}}<3.0$ GeV/c is measured to be $1.19\pm0.05$(stat)$\pm0.03$(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of $(p+\bar{p})/h$ in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.

5 data tables

The invariant yields of $\pi^{\pm}$, $K^{\pm}$, p and their anti-particles as a function of $p_{T}$ from d+Au and NSD p+p events at 200 GeV. The rapidity range was -0.5 $<$ y $<$ 0.0 with the direction of the outgoing Au ions as negative rapidity. Errors are statistical.

The invariant yields of $\pi^{\pm}$, $K^{\pm}$, p and their anti-particles as a function of $p_{T}$ from d+Au and NSD p+p events at 200 GeV. The rapidity range was -0.5 $<$ y $<$ 0.0 with the direction of the outgoing Au ions as negative rapidity. Errors are statistical.

The invariant yields of $\pi^{\pm}$, $K^{\pm}$, p and their anti-particles as a function of $p_{T}$ from d+Au and NSD p+p events at 200 GeV. The rapidity range was -0.5 $<$ y $<$ 0.0 with the direction of the outgoing Au ions as negative rapidity. Errors are statistical.

More…

rho0 production and possible modification in Au + Au and p + p collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 092301, 2004.
Inspire Record 624475 DOI 10.17182/hepdata.99052

We report results on rho(770)^0 -> pi+pi- production at midrapidity in p+p and peripheral Au+Au collisions at sqrt(s_NN) = 200 GeV. This is the first direct measurement of rho(770)^0 -> pi+pi- in heavy-ion collisions. The measured rho^0 peak in the invariant mass distribution is shifted by ~40 MeV/c^2 in minimum bias p+p interactions and ~70 MeV/c^2 in peripheral Au+Au collisions. The rho^0 mass shift is dependent on transverse momentum and multiplicity. The modification of the rho^0 meson mass, width, and shape due to phase space and dynamical effects are discussed.

5 data tables

The raw $\pi^{+} \pi^{-}$ invariant mass distributions after subtraction of the like-sign reference distribution for minimum bias p+p (top) and peripheral Au+Au (bottom) interactions.

The raw $\pi^{+} \pi^{-}$ invariant mass (solid line) and the like-sign reference distributions (open circles) for peripheral Au+Au collisions.

The $\rho^{0}$ mass as a function of $p_{T}$ for minimum bias $p$+$p$ (filled circles), high multiplicity $p$+$p$ (open triangles), and peripheral Au+Au (filled squares) collisions. The error bars indicate the systematic uncertainty. Statistical errors are negligible. The $\rho^{0}$ mass was obtained by fitting the data to the BW×PS functional form described in the text. The dashed lines represent the average of the $\rho^{0}$ mass measured in $e^{+} e^{−}$. The shaded areas indicate the ρ0 mass measured in $p$+$p$ collisions. The open triangles have been shifted downward on the abscissa by $50$ MeV/$c$ for clarity.

More…

Multi-strange baryon production in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 182301, 2004.
Inspire Record 624566 DOI 10.17182/hepdata.102321

The transverse mass spectra and mid-rapidity yields for $\Xi$s and $\Omega$s plus their anti-particles are presented. The 10% most central collision yields suggest that the amount of multi-strange particles produced per produced charged hadron increases from SPS to RHIC energies. A hydrodynamically inspired model fit to the spectra, which assumes a thermalized source, seems to indicate that these multi-strange particles experience a significant transverse flow effect, but are emitted when the system is hotter and the flow is smaller than values obtained from a combined fit to $\pi$, K, p and $\Lambda$s.

19 data tables

$m_T$ spectra of $\Xi^-$ and $\bar{\Xi}^+$ for 0-10% centrality. Errors listed here are the quadrature sum of statistical and point-to-point systematic uncertainties. There is an additional overall $m_T$-independent systematic uncertainty of 10%.

$m_T$ spectra of $\Xi^-$ and $\bar{\Xi}^+$ for 10-25% centrality. Errors listed here are the quadrature sum of statistical and point-to-point systematic uncertainties. There is an additional overall $m_T$-independent systematic uncertainty of 10%.

$m_T$ spectra of $\Xi^-$ and $\bar{\Xi}^+$ for 25-75% centrality. Errors listed here are the quadrature sum of statistical and point-to-point systematic uncertainties. There is an additional overall $m_T$-independent systematic uncertainty of 10%.

More…

Particle dependence of azimuthal anisotropy and nuclear modification of particle production at moderate p(T) in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, John ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 052302, 2004.
Inspire Record 620309 DOI 10.17182/hepdata.93260

We present STAR measurements of the azimuthal anisotropy parameter $v_2$ and the binary-collision scaled centrality ratio $R_{CP}$ for kaons and lambdas ($\Lambda+\bar{\Lambda}$) at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. In combination, the $v_2$ and $R_{CP}$ particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish $p_T \approx 5$ GeV/c as the value where the centrality dependent baryon enhancement ends. The $K_S^0$ and $\Lambda+\bar{\Lambda}$ $v_2$ values are consistent with expectations of constituent-quark-number scaling from models of hadron fromation by parton coalescence or recombination.

9 data tables

The minimum bias (0-80% of the collision cross-section) v2(pT) of K0s. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.

The minimum bias (0-80% of the collision cross-section) v2(pT) of Lambda+Lambdabar. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.

The minimum bias (0-80% of the collision cross-section) v2(pT) of charged hadrons. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.

More…

Strange anti-particle to particle ratios at mid-rapidity in s(NN)**(1/2) = 130-GeV Au + Au collisions.

The STAR collaboration Adams, John ; Adler, C. ; Ahammed, Z. ; et al.
Phys.Lett.B 567 (2003) 167-174, 2003.
Inspire Record 602867 DOI 10.17182/hepdata.98924

Values of the ratios in the mid-rapidity yields of anti-Lambda/Lambda = 0.71 +/- 0.01(stat.) +/- 0.04(sys.), anti-Xi+/Xi- = 0.83 +/- 0.04(stat.) +/- 0.05 (sys.), anti-Omega+/Omega- = 0.95 +/- 0.15(stat) +/- 0.05(sys.) and K+/K- 1.092 +/- 0.023(combined) were obtained in central sqrt(s_NN) = 130 GeV Au+Au collisions using the STAR detector. The ratios indicate that a fraction of the net-baryon number from the initial system is present in the excess of hyperons over anti-hyperons at mid-rapidity. The trend in the progression of the baryon ratios, with increasing strange quark content, is similar to that observed in heavy-ion collisions at lower energies. The value of these ratios may be related to the charged kaon ratio in the framework of simple quark-counting and thermal models.

5 data tables

Invariant mass distributions for $\Lambda$ and Anti-$\Lambda$

Invariant mass distributions for $\Xi$ and Anti-$\Xi$

Invariant mass distributions for $\Omega$ and Anti-$\Omega$

More…

Kaon production and kaon to pion ratio in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Lett.B 595 (2004) 143-150, 2004.
Inspire Record 588342 DOI 10.17182/hepdata.98923

Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au+Au collisions at $\snn$=130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are $K^+/\pi^- = 0.161 \pm 0.002 {\rm (stat)} \pm 0.024 {\rm (syst)}$ and $K^-/\pi^- = 0.146 \pm 0.002 {\rm (stat)} \pm 0.022 {\rm (syst)}$ for the most central collisions. The $K^+/\pi^-$ ratio is lower than the same ratio observed at the SPS while the $K^-/\pi^-$ is higher than the SPS result. Both ratios are enhanced by about 50% relative to p+p and $\bar{\rm p}$+p collision data at similar energies.

6 data tables

Transverse mass distributions for different centralities: dE/dx identified charged kaons. K+

Transverse mass distributions for different centralities: dE/dx identified charged kaons. K-

Transverse mass distributions for different centralities: Neutral Kaons.

More…