None
No description provided.
No description provided.
No description provided.
The differential cross sections of the proton Compton scattering around the second resonance have been measured at a c.m. angle of 90° for incident photon energies between 450 MeV and 950 MeV in steps of 50 MeV, and at an angle of 60° for energies between 600 MeV and 800 MeV. The results show that the peak of the 2nd resonance agrees with that of the pion photoproduction process. We also calculated the proton Compton scattering based on unitarity and fixed- t dispersion relations. The calculation describes well the data of the cross section and the recoil proton polarization.
No description provided.
The recoil proton polarization of proton Compton scattering (γp→γp) was measured in the photon energy range from 500 MeV to 1000 MeV atθ∗=100° and from 400MeV to 800 MeV atθ∗=130°. A recoil proton and a scattered photon were detected in coincidence with a magnetic spectrometer and a photon detector. The recoil proton polarization was measured with a carbon polarimeter. The results are compared with a phenomenological analysis based on an isobar model and a dynamical analysis based on the dispersion relation.
No description provided.
No description provided.
The recoil proton polarization of the reaction γ p → π 0 p was measured at a c.m. angle of 100° for incident photon energies between 451 and 1106 MeV, and at an angle of 130° for energies from 400 to 1142 MeV. One photon, decayed from a π 0 meson, and a recoil proton were detected in coincidence. Two kinds of polarization analyzer were employed. In the range of proton kinetic energy less than 420 MeV and higher than 346 MeV, carbon plates and liquid hydrogen were used for determining the polarization, respectively. The data given by the two polarimeter systems are in good agreement. Results are compared with recent phenomenological analyses. From the comparison between the present data and the polarized target data, the invariant amplitude A 3 can be estimated to be small.
RESULT WITH THE CARBON POLARIMETER.
RESULT WITH THE CARBON POLARIMETER.
Differential cross sections of proton Compton scattering have been measured in the energy range between 375 MeV and 1150 MeV in steps of 25 MeV at c.m. angles of 130°, 100° and 70°. The recoil proton was detected with a magnetic spectrometer. In coincidence with the proton, the scattered photon was detected with a lead-glass Čerenkov counter of the total absorption type.
No description provided.
No description provided.
We study the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-\gamma$, with a hard photon radiated from the initial state. About 60,000 fully reconstructed events have been selected from 89 $fb^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that these data can be compared with the corresponding direct $e^+e^-$ measurements. From the $4\pi$-mass spectrum, the cross section for the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-$ is measured for center-of-mass energies from 0.6 to 4.5 $GeV/c^2$. The uncertainty in the cross section measurement is typically 5%. We also measure the cross sections for the final states $K^+ K^- \pi^+\pi^-$ and $K^+ K^- K^+ K^-$. We observe the $J/\psi$ in all three final states and measure the corresponding branching fractions. We search for X(3872) in $J/\psi (\to\mu^+\mu^-) \pi^+\pi^-$ and obtain an upper limit on the product of the $e^+e^-$ width of the X(3872) and the branching fraction for $X(3872) \to J/\psi\pi^+\pi^-$.
Measured PI+ PI- PI+ PI- cross sections. The errors are statistical only.
We present measurements of the total production rates and momentum distributions of the charmed baryon $\Lambda_c^+$ in $e^+e^- \to$ hadrons at a center-of-mass energy of 10.54 GeV and in $\Upsilon(4S)$ decays. In hadronic events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in $e^+e^- \to c\bar{c}$ events, allowing direct studies of $c$-quark fragmentation. We measure a momentum distribution for $\Lambda_c^+$ baryons that differs significantly from those measured previously for charmed mesons. Comparing with a number of models, we find none that can describe the distribution completely. We measure an average scaled momentum of $\left< x_p \right> = 0.574\pm$0.009 and a total rate of $N_{\Lambda c}^{q\bar{q}} = 0.057\pm$0.002(exp.)$\pm$0.015(BF) $\Lambda_c^+$ per hadronic event, where the experimental error is much smaller than that due to the branching fraction into the reconstructed decay mode, $pK^-\pi^+$. In $\Upsilon (4S)$ decays we measure a total rate of $N_{\Lambda c}^{\Upsilon} = 0.091\pm$0.006(exp.)$\pm$0.024(BF) per $\Upsilon(4S)$ decay, and find a much softer momentum distribution than expected from B decays into a $\Lambda_c^+$ plus an antinucleon and one to three pions.
The integrated number of LAMBDA/C+'s per hadronic event for the continuum at cm energy 10.54 GeV.
This paper gives the results of a study of inelastic charged-current interactions of muon-type neutrinos with hydrogen and deuterium targets using the Argonne 12-foot bubble chamber. We discuss in detail the separation of the events from background. For the single-pion production reactions νp→μ−pπ+, νn→μ−nπ+, and νn→μ−pπ0, energy-dependent cross sections, differential cross sections, invariant-mass distributions, and the Δ++(1236) decay angular distribution are presented. These data are also used to study the isospin properties of the πN system. Comparisons of the data with models of single-pion production are made, and a direct test of partial conservation of the axial-vector current is discussed. Cross sections and invariant-mass distributions are given for the reactions in which more than one pion is produced. Ten events of strange-particle production were found, and the properties of these events are discussed. The energy dependence of the total νp and νn cross sections from threshold to 6 GeV was determined, and the σ(νn)σ(νp) ratio measured. This ratio and the inclusive x and y distributions rapidly approach the scaling distributions expected from the quark-parton model.
Measured charged current total cross section.
The differential cross sections at 180° for the reactions γ+p→π++n and γ+n→π−+p were measured using a magnetic spectrometer to detect π± mesons. In order to reduce the spread of energy resolution due to the nucleon motion inside the deuteron, a photon difference method was employed with a 50-MeV step for the reaction γ+n→π−+p. The data show structures at the second- and the third-resonance regions for both reactions. A simple phenomenological analysis was made for fitting the data, and the results are compared with those of previous analyses.
No description provided.
No description provided.
Measurements of the semileptonic weak-neutral-current reactions νμp→νμp and ν¯μp→ν¯μp are presented. The experiment was performed using a 170-metric-ton high-resolution target detector in the BNL wide-band neutrino beam. High-statistics samples yield the absolute differential cross sections dσ(νμp)/dQ2 and dσ(ν¯μp)/dQ2. A measurement of the axial-vector form factor GA(Q2) is also presented. The results are in good agreement with the standard model SU(2)×U(1). The weak-neutral-current parameter sin2thetaW is determined to be sin2θW=0.220±0.016(stat)−0.031+0.023(syst).
Errors contain both statistics and systematics, except for additional overall normalisation error given above. Neutrino energy is 0 to 5 GeV with peak at 0.8 Gev.