Date

Evidence for $B^{+}\to K^{+}\nu\bar{\nu}$ Decays

The Belle-II collaboration Adachi, I. ; Adamczyk, K. ; Aggarwal, L. ; et al.
Phys.Rev.D 109 (2024) 112006, 2024.
Inspire Record 2725943 DOI 10.17182/hepdata.146803

We search for the rare decay $B^{+}\rightarrow K^{+}\nu\bar{\nu}$ in a $362\ \rm{fb}^{-1}$ sample of electron-positron collisions at the $\Upsilon(4S)$ resonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanying $B$ meson in $\Upsilon(4S) \to B\kern 0.18em\overline{\kern -0.18em B}{}$ events to suppress background from other decays of the signal $B$ candidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanying $B$ meson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for the $B^{+}\rightarrow K^{+}\nu\bar{\nu}$ branching fraction of $\left[2.7\pm 0.5(\mathrm{stat})\pm 0.5(\mathrm{syst})\right] \times 10^{-5}$ and $\left[1.1^{+0.9}_{-0.8}(\mathrm{stat}){}^{+0.8}_{-0.5}(\mathrm{syst})\right] \times 10^{-5}$, respectively. Combining the results, we determine the branching fraction of the decay $B^{+}\rightarrow K^{+}\nu\bar{\nu}$ to be $\left[2.3 \pm 0.5(\mathrm{stat})^{+0.5}_{-0.4}(\mathrm{syst})\right]\times 10^{-5}$, providing the first evidence for this decay at $3.5$ standard deviations. The combined result is $2.7$ standard deviations above the standard model expectation.

15 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - -<br/><br/></ul><b>Post-fit yields:</b><ul><li><a href="146803?version=1&table=Postfit%20yields%20Y(4S)%3A%20fit%20variable%20(ITA)">Y(4S) fit variable (ITA)</a><li><a href="146803?version=1&table=Postfit%20yields%20off-resonance%3A%20fit%20variable%20(ITA)">Off-resonance fit variable (ITA)</a><li><a href="146803?version=1&table=Postfit%20yields%20Y(4S)%3A%20%24%5Ceta(%5Crm%7BBDT%7D_%7B2%7D)%24%20(ITA)">Y(4S) $\eta(\rm{BDT}_{2})$ (ITA)</a><li><a href="146803?version=1&table=Postfit%20yields%20Y(4S)%3A%20%24q%5E%7B2%7D%24%20(HTA)">Y(4S) $q^{2}$ (ITA)</a><li><a href="146803?version=1&table=Postfit%20yields%20Y(4S)%3A%20%24%5Ceta(%5Crm%7BBDT%7D_%7B2%7D)%24%20(ITA%2C%20signal-rich)">Y(4S) $\eta(\rm{BDT}_{2})$ (ITA, signal-rich)</a><li><a href="146803?version=1&table=Postfit%20yields%20Y(4S)%3A%20%24q%5E%7B2%7D%24%20%20(ITA%2C%20signal-rich)">Y(4S) $q^{2}$ (ITA, signal-rich)</a><li><a href="146803?version=1&table=Postfit%20yields%20Y(4S)%3A%20fit%20variable%20(HTA)">Y(4S) fit variable (HTA)</a><li><a href="146803?version=1&table=Postfit%20yields%20Y(4S)%3A%20%24q%5E%7B2%7D%24%20(HTA)">Y(4S) $q^{2}$ (HTA)</a></ul><b>Signal selection efficiency:</b><ul><li><a href="146803?version=1&table=Selection%20efficiency%20(ITA)">ITA</a><li><a href="146803?version=1&table=Selection%20efficiency%20(HTA)">HTA</a></ul><b>Likelihoods:</b><ul><li><a href="146803?version=1&table=Profile%20likelihoods%20(HTA)">HTA</a><li><a href="146803?version=1&table=Profile%20likelihoods%20(ITA)">ITA</a><li><a href="146803?version=1&table=Profile%20likelihoods%20(Combined)">Combined</a></ul><b>Branching fraction summary:</b><ul><li><a href="146803?version=1&table=Branching%20fraction%20summary">Branching fraction summary</a></ul></ul>HistFactory json with full statistical model for combined likelihood and minimal fitting example are included under Resources.<ul>

Observed yields and fit results in bins of the $\eta(\rm{BDT}_{2})\times q^2_{\mathrm{rec}}$ space obtained by the ITA simultaneous fit to the off- and on-resonance data, corresponding to an integrated luminosity of 42 and 362 fb$^{-1}$, respectively. The yields are shown individually for the $B^+ \rightarrow K^{+}\nu\bar\nu$ signal, neutral and charged $B$-meson decays and the sum of the five continuum categories. The yields are obtained in bins of the $\eta(\rm{BDT}_{2})\times q^2_{\mathrm{rec}}$ space.

Observed yields and fit results in bins of the $\eta(\rm{BDT}_{2})\times q^2_{\mathrm{rec}}$ space obtained by the ITA simultaneous fit to the off- and on-resonance data, corresponding to an integrated luminosity of 42 and 362 fb$^{-1}$, respectively. The yields are shown individually for the $B^+ \rightarrow K^{+}\nu\bar\nu$ signal, neutral and charged $B$-meson decays and the sum of the five continuum categories. The yields are obtained in bins of the $\eta(\rm{BDT}_{2})\times q^2_{\mathrm{rec}}$ space.

More…

Determination of $|V_{cb}|$ using $\overline{B}^0\to D^{*+}\ell^-\bar\nu_\ell$ decays with Belle II

The Belle-II collaboration Adachi, I. ; Adamczyk, K. ; Aggarwal, L. ; et al.
Phys.Rev.D 108 (2023) 092013, 2023.
Inspire Record 2705370 DOI 10.17182/hepdata.145129

We determine the CKM matrix-element magnitude $|V_{cb}|$ using $\overline{B}^0\to D^{*+}\ell^-\bar\nu_\ell$ decays reconstructed in $189 \, \mathrm{fb}^{-1}$ of collision data collected by the Belle II experiment, located at the SuperKEKB $e^+e^-$ collider. Partial decay rates are reported as functions of the recoil parameter $w$ and three decay angles separately for electron and muon final states. We obtain $|V_{cb}|$ using the Boyd-Grinstein-Lebed and Caprini-Lellouch-Neubert parametrizations, and find $|V_{cb}|_\mathrm{BGL}=(40.57\pm 0.31 \pm 0.95\pm 0.58)\times 10^{-3}$ and $|V_{cb}|_\mathrm{CLN}=(40.13 \pm 0.27 \pm 0.93\pm 0.58 )\times 10^{-3}$ with the uncertainties denoting statistical components, systematic components, and components from the lattice QCD input, respectively. The branching fraction is measured to be ${\cal B}(\overline{B}^0\to D^{*+}\ell^-\bar\nu_\ell)=(4.922 \pm 0.023 \pm 0.220)\%$. The ratio of branching fractions for electron and muon final states is found to be $0.998 \pm 0.009 \pm 0.020$. In addition, we determine the forward-backward angular asymmetry and the $D^{*+}$ longitudinal polarization fractions. All results are compatible with lepton-flavor universality in the Standard Model.

8 data tables

Measured partial decay rates $\Delta\Gamma$ (in units of $10^{-15}$ GeV)

Average of normalized decay rates over $\overline{B}^0\to D^{*+} e^- \bar\nu_e$ and $\overline{B}^0\to D^{*+} \mu^- \bar\nu_\mu$ decays

Full experimental (statistical and systematic) correlations (in \%) of the partial decay rates for the $\overline{B}^0\to D^{*+} e^- \bar\nu_e$ and $\overline{B}^0\to D^{*+} \mu^- \bar\nu_\mu$ decays.

More…

Tests of light-lepton universality in angular asymmetries of $B^0 \to D^{*-} \ell \nu$ decays

The Belle-II collaboration Adachi, I. ; Adamczyk, K. ; Aggarwal, L. ; et al.
Phys.Rev.Lett. 131 (2023) 181801, 2023.
Inspire Record 2685572 DOI 10.17182/hepdata.144759

We present the first comprehensive tests of light-lepton universality in the angular distributions of semileptonic $B^0$-meson decays to charged spin-1 charmed mesons. We measure five angular-asymmetry observables as functions of the decay recoil that are sensitive to lepton-universality-violating contributions. We use events where one neutral $B$ is fully reconstructed in $\Upsilon\left(4S\right)\to{}B \overline{B}$ decays in data corresponding to $189~\mathrm{fb}^{-1}$ integrated luminosity from electron-positron collisions collected with the Belle II detector. We find no significant deviation from the standard model expectations.

2 data tables

Observed values of all angular asymmetry variables.

Full experimental covariance matrix of all angular asymmetry variables.


Version 3
Search for a long-lived spin-0 mediator in $b\to s$ transitions at the Belle II experiment

The Belle-II collaboration Adachi, I. ; Adamczyk, K. ; Aggarwal, L. ; et al.
Phys.Rev.D 108 (2023) L111104, 2023.
Inspire Record 2665757 DOI 10.17182/hepdata.147283

Additional spin-0 particles appear in many extensions of the standard model. We search for long-lived spin-0 particles $S$ in $B$-meson decays mediated by a $b\to s$ quark transition in $e^+e^-$ collisions at the $\Upsilon(4S)$ resonance at the Belle II experiment. Based on a sample corresponding to an integrated luminosity of $189 \mathrm{\,fb}^{-1}$, we observe no evidence for signal. We set model-independent upper limits on the product of branching fractions $\mathrm{Br}(B^0\to K^*(892)^0(\to K^+\pi^-)S)\times \mathrm{Br}(S\to x^+x^-)$ and $\mathrm{Br}(B^+\to K^+S)\times \mathrm{Br}(S\to x^+x^-)$, where $x^+x^-$ indicates $e^+e^-, \mu^+\mu^-, \pi^+\pi^-$, or $K^+K^-$, as functions of $S$ mass and lifetime at the level of $10^{-7}$.

166 data tables

Expected and observed candidates for $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) as a function of the reduced mediator candidate mass.

Expected and observed candidates for $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) as a function of the reduced mediator candidate mass.

Expected and observed candidates for $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) as a function of the reduced mediator candidate mass.

More…

Disentangling centrality bias and final-state effects in the production of high-$p_T$$\pi^0$ using direct $\gamma$ in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.Lett. 134 (2025) 022302, 2025.
Inspire Record 2645172 DOI 10.17182/hepdata.152620

PHENIX presents a simultaneous measurement of the production of direct $\gamma$ and $\pi^0$ in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV over a $p_T$ range of 7.5 to 18 GeV/$c$ for different event samples selected by event activity, i.e. charged-particle multiplicity detected at forward rapidity. Direct-photon yields are used to empirically estimate the contribution of hard-scattering processes in the different event samples. Using this estimate, the average nuclear-modification factor $R_{d\rm Au,EXP}^{\gamma^{\rm dir}}$ is $0.925{\pm}0.023({\rm stat}){\pm}0.15^{\rm (scale)}$, consistent with unity for minimum-bias (MB) $d$$+$Au events. For event classes with moderate event activity, $R_{d\rm Au,EXP}^{\gamma^{\rm dir}}$ is consistent with the MB value within 5% uncertainty. These results confirm that the previously observed enhancement of high-$p_T$$\pi^0$ production found in small-system collisions with low event activity is a result of a bias in interpreting event activity within the Glauber framework. In contrast, for the top 5% of events with the highest event activity, $R_{d\rm Au,EXP}^{\gamma^{\rm dir}}$ is suppressed by 20% relative to the MB value with a significance of $4.5\sigma$, which may be due to final-state effects.

8 data tables

The $p_{T}$ distribution at high $p_{T}$ of neutral pions (panel (a)) for different d+Au event activity classes compared to those from p+p collisions (Phys. Rev. C 105, 064902).

The $p_{T}$ distribution at high $p_{T}$ of direct photons (panel (b)) for different d+Au event activity classes compared to those from p+p collisions (Phys. Rev. D 86, 072008).

Panel (c) shows the ratio $\gamma^{dir}/\pi^{0}$. For better visibility the points are slightly shifted in $p_{T}$ .

More…

Transverse single-spin asymmetry of midrapidity $\pi^{0}$ and $\eta$ mesons in $p$+Au and $p$+Al collisions at $\sqrt{s_{_{NN}}}=$ 200 GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 107 (2023) 112004, 2023.
Inspire Record 2641468 DOI 10.17182/hepdata.139098

Presented are the first measurements of the transverse single-spin asymmetries ($A_N$) for neutral pions and eta mesons in $p$+Au and $p$+Al collisions at $\sqrt{s_{_{NN}}}=200$ GeV in the pseudorapidity range $|\eta|<$0.35 with the PHENIX detector at the Relativistic Heavy Ion Collider. The asymmetries are consistent with zero, similar to those for midrapidity neutral pions and eta mesons produced in $p$+$p$ collisions. These measurements show no evidence of additional effects that could potentially arise from the more complex partonic environment present in proton-nucleus collisions.

2 data tables

Data from Figure 2 (a) of the $\pi^{0}$ transverse single-spin asymmetry in $\sqrt{s_{NN}}=200$ GeV $p^{\uparrow}+$Au and $p^{\uparrow}+$Al collisions as a function of $p_{T}$.

Data from Figure 2 (b) of the $\eta$ transverse single-spin asymmetry in $\sqrt{s_{NN}}=200$ GeV $p^{\uparrow}+$Au and $p^{\uparrow}+$Al collisions as a function of $p_{T}$.


Search for an invisible $Z^\prime$ in a final state with two muons and missing energy at Belle II

The Belle-II collaboration Adachi, I. ; Adamczyk, K. ; Aggarwal, L. ; et al.
Phys.Rev.Lett. 130 (2023) 231801, 2023.
Inspire Record 2611344 DOI 10.17182/hepdata.138160

The $L_{\mu}-L_{\tau}$ extension of the standard model predicts the existence of a lepton-flavor-universality-violating $Z^{\prime}$ boson that couples only to the heavier lepton families. We search for such a $Z^\prime$ through its invisible decay in the process $e^+ e^- \to \mu^+ \mu^- Z^{\prime}$. We use a sample of electron-positron collisions at a center-of-mass energy of 10.58GeV collected by the Belle II experiment in 2019-2020, corresponding to an integrated luminosity of 79.7fb$^{-1}$. We find no excess over the expected standard-model background. We set 90$\%$-confidence-level upper limits on the cross section for this process as well as on the coupling of the model, which ranges from $3 \times 10^{-3}$ at low $Z^{\prime}$ masses to 1 at $Z^{\prime}$ masses of 8$GeV/c^{2}$.

4 data tables

Observed 90% CL upper limits on the cross section $\sigma (e^+ e^- \to \mu^+ \mu^- Z', Z' \to $ invisible) as functions of the $Z'$ mass for the cases of negligible $\Gamma_{Z'}$ and for $\Gamma_{Z'} = 0.1 M_{Z'}$. Also shown are previous limits from Belle II.

Observed 90% CL upper limits on the coupling $g'$ for the fully invisible $L_\mu − L_\tau$ model as functions of the $Z'$ mass for the cases of negligible $\Gamma_{Z'}$ and for $\Gamma_{Z'} = 0.1 M_{Z'}$. Also shown are previous limits from NA64-e and Belle II searches. The red band shows the region that explains the muon anomalous magnetic moment $(g - 2)_\mu \pm 2 \sigma$. The vertical dashed line indicates the limit beyond which the hypothesis $B(Z' \to \chi\bar{\chi}) \approx 1$ is not respected in the negligible $\Gamma_{Z'}$ case.

Observed 90% CL upper limits on the coupling $g'$ for the vanilla $L_\mu − L_\tau$ model as functions of the $Z'$ mass. Also shown are previous limits from Belle II and NA64-e searches for invisible $Z'$ decays, and from Belle, BaBar and CMS searches for $Z'$ decays to muons (at 95% CL). The red band shows the region that explains the muon anomalous magnetic moment $(g - 2)_\mu \pm 2 \sigma$.

More…

Measurement of $\phi$-meson production in Cu$+$Au at $\sqrt{s_{_{NN}}}=200$ GeV and U$+$U at $\sqrt{s_{_{NN}}}=193$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.C 107 (2023) 014907, 2023.
Inspire Record 2623245 DOI 10.17182/hepdata.132483

The PHENIX experiment reports systematic measurements at the Relativistic Heavy Ion Collider of $\phi$-meson production in asymmetric Cu$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV and in U$+$U collisions at $\sqrt{s_{_{NN}}}$=193 GeV. Measurements were performed via the $\phi\rightarrow K^{+}K^{-}$ decay channel at midrapidity $|\eta|<0.35$. Features of $\phi$-meson production measured in Cu$+$Cu, Cu$+$Au, Au$+$Au, and U$+$U collisions were found to not depend on the collision geometry, which was expected because the yields are averaged over the azimuthal angle and follow the expected scaling with nuclear-overlap size. The elliptic flow of the $\phi$ meson in Cu$+$Au, Au$+$Au, and U$+$U collisions scales with second-order-participant eccentricity and the length scale of the nuclear-overlap region (estimated with the number of participating nucleons). At moderate $p_T$, $\phi$-meson production measured in Cu$+$Au and U$+$U collisions is consistent with coalescence-model predictions, whereas at high $p_T$ the production is in agreement with expectations for in-medium energy loss of parent partons prior to their fragmentation. The elliptic flow for $\phi$ mesons measured in Cu$+$Au and U$+$U collisions is well described by a (2+1)D viscous-hydrodynamic model with specific-shear viscosity $\eta/s=1/4\pi$.

14 data tables

Invariant transverse momentum spectra measured for $\phi$ mesons in (a) Cu+Au and (b) U+U collisions at $\sqrt{s}$ = 200 GeV at midrapidity

Invariant transverse momentum spectra measured for $\phi$ mesons in (c) Cu+Au and (d) U+U collisions at $\sqrt{s}$ = 200 GeV at midrapidity. Data-to- Levy fit ratios.

The $\phi$-meson nuclear modification factors $R_{AB}$ measured as a function of $p_T$ in different centrality intervals of (a) to (d) Cu+Au collisions at $\sqrt{s}$ = 200 GeV and (e) to (h) U+U collisions at $\sqrt{s}$ = 193 GeV at midrapidity $|\eta|<0.35$. The normalization uncertainty from p+p of about $\sim9.7\%$ is not shown.

More…

Improving constraints on gluon spin-momentum correlations in transversely polarized protons via midrapidity open-heavy-flavor electrons in $p^{\uparrow}+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 107 (2023) 052012, 2023.
Inspire Record 2072832 DOI 10.17182/hepdata.130883

Polarized proton-proton collisions provide leading-order access to gluons, presenting an opportunity to constrain gluon spin-momentum correlations within transversely polarized protons and enhance our understanding of the three-dimensional structure of the proton. Midrapidity open-heavy-flavor production at $\sqrt{s}=200$ GeV is dominated by gluon-gluon fusion, providing heightened sensitivity to gluon dynamics relative to other production channels. Transverse single-spin asymmetries of positrons and electrons from heavy-flavor hadron decays are measured at midrapidity using the PHENIX detector at the Relativistic Heavy Ion Collider. These charge-separated measurements are sensitive to gluon correlators that can in principle be related to gluon orbital angular momentum via model calculations. Explicit constraints on gluon correlators are extracted for two separate models, one of which had not been constrained previously.

1 data table

Data from Figure 1 of open heavy flavor $e^{\pm}$ transverse single-spin asymmetries in transversely polarized p+p collisions as a function of $p_{T}$.


Nonprompt direct-photon production in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U.A. ; Adare, A. ; et al.
Phys.Rev.C 109 (2024) 044912, 2024.
Inspire Record 2061074 DOI 10.17182/hepdata.129292

The measurement of the direct-photon spectrum from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV is presented by the PHENIX collaboration using the external-photon-conversion technique for 0%--93% central collisions in a transverse-momentum ($p_T$) range of 0.8--10 GeV/$c$. An excess of direct photons, above prompt-photon production from hard-scattering processes, is observed for $p_T<6$ GeV/$c$. Nonprompt direct photons are measured by subtracting the prompt component, which is estimated as $N_{\rm coll}$-scaled direct photons from $p$ $+$ $p$ collisions at 200 GeV, from the direct-photon spectrum. Results are obtained for $0.8<p_T<6.0$ GeV/$c$ and suggest that the spectrum has an increasing inverse slope from ${\approx}0.2$ to 0.4 GeV/$c$ with increasing $p_T$, which indicates a possible sensitivity of the measurement to photons from earlier stages of the evolution of the collision. In addition, like the direct-photon production, the $p_T$-integrated nonprompt direct-photon yields also follow a power-law scaling behavior as a function of collision-system size. The exponent, $\alpha$, for the nonprompt component is found to be consistent with 1.1 with no apparent $p_T$ dependence.

9 data tables

Direct photon $R_{\gamma}$, every 20% centrality

Direct photon $R_{\gamma}$, every 10% centrality

Invariant yield of direct photons, every 10% centrality

More…