The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC using $140\,\mathrm{fb^{-1}}$ of ATLAS data. The total cross-sections are determined to be $\sigma(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $\sigma(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $\sigma(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=\sigma(tq)/\sigma(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The predictions at next-to-next-to-leading-order in quantum chromodynamics are in good agreement with these measurements. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared with the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measured cross-sections are interpreted in an effective field theory approach, setting limits at the 95% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{Qq}^{3,1}/\Lambda^2 < 0.06$ and $-0.87 < C_{\phi Q}^{3}/\Lambda^2 < 1.42$. The constraint $|V_{tb}|>0.95$ at the 95% confidence level is derived from the measured value of $\sigma(tq+\bar{t}q)$. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces.
The 17 variables used for the training of the NN ordered by their discriminating power. The jet that is not \(b\)-tagged is referred to as the untagged jet. The charged lepton is denoted \(\ell\). The sphericity tensor \(S^{\alpha\beta}\) used to define the sphericity \(S\) is formed with the three-momenta \(\vec{p}_i\) of the reconstructed objects, namely the jets, the charged lepton and the reconstructed neutrino. The tensor is given by \(S^{\alpha\beta}=\frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\vec{p}_i|^2}\) where \(\alpha\) and \(\beta\) correspond to the spatial components $x$, $y$ and $z$.
The impact of different groups of systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\), \(\sigma(tq + \bar t q)\) and \(R_t\), given in %.
The impact of the eight most important systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\) and \(\sigma(tq + \bar t q)\), given in %. The sequence of the uncertainties is given by the impact on \(\sigma(tq + \bar t q)\)
The production of J/$\psi$ mesons is studied in proton-lead collisions at the centre-of-mass energy per nucleon pair $\sqrt{s_{\text{NN}}}=8.16$ TeV with the LHCb detector at the LHC. The double differential cross-sections of prompt and nonprompt J/$\psi$ production are measured as functions of the J/$\psi$ transverse momentum and rapidity in the nucleon-nucleon centre-of-mass frame. Forward-to-backward ratios and nuclear modification factors are determined. The results are compared with theoretical calculations based on collinear factorisation using nuclear parton distribution functions, on the colour glass condensate or on coherent energy loss models.
The total integrated cross sections for prompt $J/\psi$ production, assuming no polarisation, and $J/\psi$ production from $b$-hadron decays in the rapidity range $1.5 < y^* < 4.0$ in the nucleon-nucleon centre-of-mass frame measured in the proton-lead beam configuration and transverse momentum 0-14 GeV/c. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty.
The total integrated cross sections for prompt $J/\psi$ production, assuming no polarisation, and $J/\psi$ production from $b$-hadron decays in the rapidity range $-5.0 < y^* < -2.5$ in the nucleon-nucleon centre-of-mass frame measured in the lead-proton beam configuration and transverse momentum 0-14 GeV/c. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty
The double-differential cross sections for prompt $J/\psi$ production, assuming no polarisation, as a function of transverse momentum for the rapidity range $1.5 < y^* < 4.0$ in the nucleon-nucleon centre-of-mass frame. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty.
Using the KEDR detector at the VEPP-4M $e^+e^-$ collider, we have measured the values of $R_{\text{uds}}$ and $R$ at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than $3.3\%$ at most of energy points with a systematic uncertainty of about $2.1\%$. At the moment it is the most accurate measurement of $R(s)$ in this energy range.
Measured values of $R_{\rm{uds}}(s)$ and $R(s)$ with statistical and systematic uncertainties.
Using a data sample collected with the BESIII detector operating at the BEPCII storage ring, we observe a new neutral state $Z_c(3900)^{0}$ with a significance of $10.4\sigma$. The mass and width are measured to be $3894.8\pm2.3\pm3.2$ MeV/$c^2$ and $29.6\pm8.2\pm8.2$~MeV, respectively, where the first error is statistical and the second systematic. The Born cross section for $e^+e^-\to\pi^0\pi^0 J/\psi$ and the fraction of it attributable to $\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi$ in the range $E_{cm}=4.19-4.42$ GeV are also determined. We interpret this state as the neutral partner of the four-quark candidate $Z_c(3900)^\pm$.
Efficiencies, yields, $R=\frac{\sigma(e^+e^-\to\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi)}{\sigma(e^+e^-\to\pi^0\pi^0 J/\psi)}$, and $\pi^0\pi^0 J/\psi$ Born cross sections at each energy point. For $N(Z_c^0)$ and $N(\pi^0\pi^0 J/\psi)$ errors and upper limits are statistical only. For $R$ and $\sigma_{\rm Born}$, the first errors and statistical and second errors are systematic. The statistical uncertainties on the efficiencies are negligible. Upper limits of $R$ (90$\%$ confidence level) include systematic errors.
The first observation of $Z$ boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of $\sqrt{s_{NN}}=5~\text{TeV}$ is presented. The data sample corresponds to an integrated luminosity of $1.6~\text{nb}^{-1}$ collected with the LHCb detector. The $Z$ candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above $20~\text{GeV}/c$. The invariant dimuon mass is restricted to the range $60-120~\text{GeV}/c^2$. The $Z$ production cross-section is measured to be \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{fwd})&=&13.5^{+5.4}_{-4.0}\text{(stat.)}\pm1.2\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the proton beam and \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{bwd}) & =&10.7^{+8.4}_{-5.1}\text{(stat.)}\pm1.0\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the lead beam, where the first uncertainty is statistical and the second systematic.
The measured Z production cross-sections in proton-lead collisions, measured in the fiducial region defined in the table, in the forward and backward directions. The statistical uncertainty is defined as the 68% confidence interval with symmetric coverage assuming that the number of candidates follows a Poisson distribution.
The forward-backward ratio measured in the overlap region 2.5 < ABS(YRAP) < 4.0. The first uncertainty is statistical, defined as the 68% confidence interval with symmetric coverage. The second uncertainty is systematic and includes the uncertainty on the acceptance correction factor, BETA, for the difference in the detector acceptance of the muons between the forward and backward directions.
Exclusive production of the isoscalar vector mesons $\omega$ and $\phi$ is measured with a 190 GeV$/c$ proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable $x_{F}$ of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on $x_{F}$ and on the invariant mass $M_{p\mathrm{V}}$ of the system formed by fast proton $p_\mathrm{fast}$ and vector meson $V$ is discussed in terms of diffractive production of $p_\mathrm{fast}V$ resonances in competition with central production. The measurement of the spin density matrix element $\rho_{00}$ of the vector mesons in different selected reference frames provides another handle to distinguish the contributions of these two major reaction types. Again, dependences of the alignment on $x_{F}$ and on $M_{p\mathrm{V}}$ are found. Most of the observations can be traced back to the existence of several excited baryon states contributing to $\omega$ production which are absent in the case of the $\phi$ meson. Removing the low-mass $M_{p\mathrm{V}}$ resonant region, the OZI rule is found to be violated by a factor of eight, independently of $x_\mathrm{F}$.
Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI). R(PHI/OMEGA) is multiplied by 100 to improve readability.
Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI) for different cuts on the vector meson momentum P(V). R(PHI/OMEGA) is multiplied by 100 to improve readability.
Spin alignment RHO(00) extracted from the helicity angle distributions for PHI and OMEGA production, in the latter case with various cuts on P(V). The uncertainty is the propagated uncertainty from the linear fits, which in turn includes the quadratic sum of statistical uncertainties and uncertainties from the background subtraction.
We study the processes $e^+ e^-\to K_S^0 K_L^0 \gamma$, $K_S^0 K_L^0 \pi^+\pi^-\gamma$, $K_S^0 K_S^0 \pi^+\pi^-\gamma$, and $K_S^0 K_S^0 K^+K^-\gamma$, where the photon is radiated from the initial state, providing cross section measurements for the hadronic states over a continuum of center-of-mass energies. The results are based on 469 fb$^{-1}$ of data collected with the BaBar detector at SLAC. We observe the $\phi(1020)$ resonance in the $K_S^0 K_L^0$ final state and measure the product of its electronic width and branching fraction with about 3% uncertainty. We present a measurement of the $e^+ e^-\to K_S^0 K_L^0 $ cross section in the energy range from 1.06 to 2.2 GeV and observe the production of a resonance at 1.67 GeV. We present the first measurements of the $e^+ e^-\to K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ cross sections, and study the intermediate resonance structures. We obtain the first observations of \jpsi decay to the $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ final states.
Cross section measurement for PHI(1020).
Mass measurement for PHI(1020).
Measurement of the PHI(1020) width.
We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.
The rate of antideuteron production from the decay of UPSILON(3S).
The rate of antideuteron production from the decay of UPSILON(2S).
The rate of antideuteron production from the decay of UPSILON(1S).
Prompt production of charmonium $\chi_{c0}$, $\chi_{c1}$ and $\chi_{c2}$ mesons is studied using proton-proton collisions at the LHC at a centre-of-mass energy of $\sqrt{s}=7$TeV. The $\chi_{c}$ mesons are identified through their decay to $J/\psi\gamma$, with $J/\psi\to\mu^+\mu^-$ using photons that converted in the detector. A data sample, corresponding to an integrated luminosity of $1.0\mathrm{fb}^{-1}$ collected by the LHCb detector, is used to measure the relative prompt production rate of $\chi_{c1}$ and $\chi_{c2}$ in the rapidity range $2.0
Measurements of the ratio of $\chi_{c2}$ to $\chi_{c1}$ production cross-sections for the given $J/\psi$ $p_T$ range assuming unpolarized $\chi_c$ production. The first uncertainty is statistical, the second is systematic, the third is from the branching fractions used and the last gives the maximum correction due to the unknown polarization.
Ratio of $\chi_{c0}$ to $\chi_{c2}$ in the observed $J/\psi$\ $p_T$ range from 4-20 GeV. Also given is the $\chi_{c2}$ to $\chi_{c1}$ ratio in the same PT range for comparison. The first systematic error is dominated by the photon efficiency,the $\chi_{c1}$ tail parameters and background modelling, the third from the choiceof $p_T$ spectrum and the fourth from the branching fraction uncertainty.
The cross sections for inelastic photoproduction of J/psi and psi^prime mesons have been measured in ep collisions with the ZEUS detector at HERA, using an integrated luminosity of 468 pb-1 collected in the period 1996--2007. The psi^prime to J/psi cross section ratio was measured in the range 0.55 < z < 0.9 and 60 < W < 190 GeV as a function of W, z and p_T. Here W denotes the photon-proton centre-of-mass energy, z is the fraction of the incident photon energy carried by the meson and p_T is the transverse momentum of the meson with respect to the beam axis. The J/psi cross sections were measured for 0.1 < z < 0.9, 60 < W < 240 GeV and p_T > 1 GeV. Theoretical predictions within the non-relativistic QCD framework including NLO colour--singlet and colour--octet contributions were compared to the data, as were predictions based on the k_T--factorisation approach.
Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of PT.
Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of W.
Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of Z.