Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Sivers asymmetries

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Phys.Lett.B 717 (2012) 383-389, 2012.
Inspire Record 1115721 DOI 10.17182/hepdata.59737

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Sivers asymmetry of the proton has been extracted in the Bjorken x range 0.003<x<0.7. The new measurements have small statistical and systematic uncertainties of a few percent and confirm with considerably better accuracy the previous COMPASS measurement. The Sivers asymmetry is found to be compatible with zero for negative hadrons and positive for positive hadrons, a clear indication of a spin-orbit coupling of quarks in a transversely polarised proton. As compared to measurements at lower energy, a smaller Sivers asymmetry for positive hadrons is found in the region x > 0.03. The asymmetry is different from zero and positive also in the low x region, where sea-quarks dominate. The kinematic dependence of the asymmetry has also been investigated and results are given for various intervals of hadron and virtual photon fractional energy. In contrast to the case of the Collins asymmetry, the results on the Sivers asymmetry suggest a strong dependence on the four-momentum transfer to the nucleon, in agreement with the most recent calculations.

54 data tables

The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

The Sivers asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

More…

Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Collins asymmetries

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Phys.Lett.B 717 (2012) 376-382, 2012.
Inspire Record 1115720 DOI 10.17182/hepdata.59732

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Collins asymmetry of the proton was extracted in the Bjorken x range 0.003<x<0.7. These new measurements confirm with higher accuracy previous measurements from the COMPASS and HERMES collaborations, which exhibit a definite effect in the valence quark region. The asymmetries for negative and positive hadrons are similar in magnitude and opposite in sign. They are compatible with model calculations in which the u-quark transversity is opposite in sign and somewhat larger than the d-quark transversity distribution function. The asymmetry is extracted as a function of Bjorken $x$, the relative hadron energy $z$ and the hadron transverse momentum p_T^h. The high statistics and quality of the data also allow for more detailed investigations of the dependence on the kinematic variables. These studies confirm the leading-twist nature of the Collins asymmetry.

54 data tables

The Collins asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

The Collins asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

The Collins asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

More…

Cross sections for the reactions $e^+ e^-\to K_S^0 K_L^0$, $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ from events with initial-state radiation

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 092002, 2014.
Inspire Record 1287920 DOI 10.17182/hepdata.64506

We study the processes $e^+ e^-\to K_S^0 K_L^0 \gamma$, $K_S^0 K_L^0 \pi^+\pi^-\gamma$, $K_S^0 K_S^0 \pi^+\pi^-\gamma$, and $K_S^0 K_S^0 K^+K^-\gamma$, where the photon is radiated from the initial state, providing cross section measurements for the hadronic states over a continuum of center-of-mass energies. The results are based on 469 fb$^{-1}$ of data collected with the BaBar detector at SLAC. We observe the $\phi(1020)$ resonance in the $K_S^0 K_L^0$ final state and measure the product of its electronic width and branching fraction with about 3% uncertainty. We present a measurement of the $e^+ e^-\to K_S^0 K_L^0 $ cross section in the energy range from 1.06 to 2.2 GeV and observe the production of a resonance at 1.67 GeV. We present the first measurements of the $e^+ e^-\to K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ cross sections, and study the intermediate resonance structures. We obtain the first observations of \jpsi decay to the $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ final states.

22 data tables

Cross section measurement for PHI(1020).

Mass measurement for PHI(1020).

Measurement of the PHI(1020) width.

More…

Measurement of the charm structure function F2(c)(gamma) of the photon at LEP.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 539 (2002) 13-24, 2002.
Inspire Record 587909 DOI 10.17182/hepdata.49793

The production of charm quarks is studied in deep-inelastic electron-photon scattering using data recorded by the OPAL detector at LEP at normal e+e- centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D0pi with the D0 observed in two decay modes with charged particle final states, Kpi and K3pi. The cross-section sigma(D*) for production of charged D* in the reaction e+e- -> e+e-D*X is measured in a restricted kinematical region using two bins in Bjorken x, 0.0014 < x < 0.1 and 0.1 < x < 0.87. From sigma(D*) the charm production cross-section sigma(e+e- -> e+e- ccbar X) and the charm structure function of the photon F 2,c are determined in the region 0.0014 < x < 0.87 and 5 < Q2 < 100 GeV2. For x > 0.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x < 0.1 the measured cross-section is 43.8 +- 14.3 +- 6.3 +- 2.8 pb with a next-to-leading order prediction of 17.0+2.9-2.3 p.b

3 data tables

The inclusive D* production cross section.

The inclusive charm quark pair cross section. The second DSYS error is due to extrapolation.

The measured structure function F2(C=CHARM). The second DSYS error is due to extrapolation.


Determination of alpha(s) from hadronic event shapes in e+ e- annihilation at 192-GeV <= s**(1/2) <= 208-GeV

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 536 (2002) 217-228, 2002.
Inspire Record 586115 DOI 10.17182/hepdata.49741

Results are presented from a study of the structure of high energy hadronic events recorded by the L3 detector at sqrt(s)>192 GeV. The distributions of several event shape variables are compared to resummed O(alphaS^2) QCD calculations. We determine the strong coupling constant at three average centre-of-mass energies: 194.4, 200.2 and 206.2 GeV. These measurements, combined with previous L3 measurements at lower energies, demonstrate the running of alphaS as expected in QCD and yield alphaS(mZ) = 0.1227 +- 0.0012 +- 0.0058, where the first uncertainty is experimental and the second is theoretical.

9 data tables

The measured ALPHA_S at three centre-of-mass energies from fits to the individual event shape distributions. The first error is statistcal, the first DSYS error is the experimental systematic uncertainty, and the second DSYS error is the theoryuncertainty.

Updated ALPHA_S measurements from the BT, BW and C-Parameter distributions,from earlier L3 data at lower centre-of-mass energies.. The first error is the total experimental error (stat+sys in quadrature) and the DSYS error is the theory uncertainty.

Combined ALPHA_S values from the five event shape variables. The first error is statistical, the first DSYS error is the experimental systematic uncertainity, the second DSYS error is the uncertainty from the hadronisdation models, andthethird DSYS errpr is the uncertainty due to uncalculated higher orders in the QCDpredictions.

More…

Measurement of charged-particle multiplicity distributions and their H(q) moments in hadronic Z decays at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 577 (2003) 109-119, 2003.
Inspire Record 565148 DOI 10.17182/hepdata.49796

The charged-particle multiplicity distribution is measured for all hadronic events as well as for light-quark and b-quark events produced in e+e- collisions at the Z pole. Moments of the charged-particle multiplicity distributions are calculated. The H moments of the multiplicity distributions are studied, and their quasi-oscillations as a function of the rank of the moment are investigated.

6 data tables

Moments of the charged particle multiplicity distribution with KOS and LAMBDA decay for all events.

Moments of the charged particle multiplicity distribution without KOS and LAMBDA decay for all events.

Moments of the charged particle multiplicity distribution with KOS and LAMBDA decay for light quark events.

More…

Measurements of the cross-sections for open charm and beauty production in gamma gamma collisions at s**(1/2) = 189-GeV to 202-GeV

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 503 (2001) 10-20, 2001.
Inspire Record 537234 DOI 10.17182/hepdata.49881

The production of c and b quarks in gamma-gamma collisions is studied with the L3 detector at LEP with 410 pb^-1 of data, collected at centre-of-mass energies from 189 GeV to 202 GeV. Hadronic final states containing c and b quarks are identified by detecting electrons or muons from their semileptonic decays. The cross sections sigma(e+e- -> e+e- c c~ X) and sigma(e+e- -> e+e- b b~ X) are measured and compared to next-to-leading order perturbative QCD calculations. The cross section of b production is measured in gamma-gamma collisions for the first time. It is in excess of the QCD prediction by a factor of three.

2 data tables

Total cross section for charm production.

Total cross section for beauty production.


Particle multiplicity of unbiased gluon jets from e+ e- three jet events

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 23 (2002) 597-613, 2002.
Inspire Record 565517 DOI 10.17182/hepdata.49742

The charged particle multiplicities of two- and three-jet events from the reaction e+e- -> Z0 -> hadrons are measured for Z0 decays to light quark (uds) flavors. Using recent theoretical expressions to account for biases from event selection, results corresponding to unbiased gluon jets are extracted over a range of jet energies from about 11 to 30 GeV. We find consistency between these results and direct measurements of unbiased gluon jet multiplicity from upsilon and Z0 decays. The unbiased gluon jet data including the direct measurements are compared to corresponding results for quark jets. We perform fits based on analytic expressions for particle multiplicity in jets to determine the ratio r = Ng/Nq of multiplicities between gluon and quark jets as a function of energy. We also determine the ratio of slopes, r(1) = (dNg/dy)/(dNq/dy), and of curvatures, r(2) = (d2Ng/dy2)/(d2Nq/dy2), where y specifies the energy scale. At 30 GeV, we find r = 1.422 +/- 0.051, r(1) = 1.761 +/- 0.071 and r(2) = 1.98 +/- 0.13, where the uncertainties are the statistical and systematic terms added in quadrature. These results are in general agreement with theoretical predictions. In addition, we use the measurements of the energy dependence of Ng and Nq to determine an effective value of the ratio of QCD color factors, CA/CF. Our result, CA/CF = 2.23 +/- 0.14 (total), is consistent with the QCD value of 2.25.

4 data tables

Measurements of the mean charged particle multiplicity of biased two-jet uds flavour events from Z0 decays as a function of the transverse momentum cutoff PT(C=LU) used to separate two- and three-jet events.

Measurements of the mean charged particle multiplicity of three-jet uds flavour 'Y events' from Z0 decays, as a function of the angle THETA1 between the lowest two energy jets. The results for the quark jet scale SQRT(S(C=QQBAR)) and the gluon jet scales PT(C=LU) and PT(C=LE) are also given.

Measurements of the unbiased gluon multiplicity as a function of the energy scale Q=PT(C=LU). The corresponding bins of THETA1 in 'Y events' are also indicated.

More…

Measurement of the low-x behavior of the photon structure function F2(gamma).

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 18 (2000) 15-39, 2000.
Inspire Record 529899 DOI 10.17182/hepdata.49907

The photon structure function F2-gamma(x,Q**2) has been measured using data taken by the OPAL detector at centre-of-mass energies of 91Gev, 183Gev and 189Gev, in Q**2 ranges of 1.5 to 30.0 GeV**2 (LEP1), and 7.0 to 30.0 GeV**2 (LEP2), probing lower values of x than ever before. Since previous OPAL analyses, new Monte Carlo models and new methods, such as multi-variable unfolding, have been introduced, reducing significantly the model dependent systematic errors in the measurement.

12 data tables

Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 1.9 GeV**2.

Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 3.7 GeV**2.

Results of F2/ALPHAE for the LEP1 data using the FD for Q**2 = 8.9 GeV**2.

More…

Study of Z boson pair production in e+ e- interactions at s**(1/2) = 192-GeV - 202-GeV

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 497 (2001) 23-38, 2001.
Inspire Record 534435 DOI 10.17182/hepdata.49829

The cross section for the production of Z boson pairs is measured using the data collected by the L3 detector at LEP in 1999 in e^+e^- collisions at centre-of-mass energies ranging from 192 GeV up to 202 GeV. Events in all the visible final states are selected, measuring the cross section of this process. The special case of final states containing b quarks is also investigated. All results are in agreement with the Standard Model predictions.

2 data tables

Two methodics are used for evaluation of the cross section's values.

The result is combination for different energies.