Version 4
Measurement of the $\mathrm e^+\mathrm e^-\rightarrow\mathrm\pi^+\mathrm\pi^-$ Cross Section between 600 and 900 MeV Using Initial State Radiation

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Adlarson, P. ; et al.
Phys.Lett.B 753 (2016) 629-638, 2016.
Inspire Record 1385603 DOI 10.17182/hepdata.73898

In Phys. Lett. B 753, 629-638 (2016) [arXiv:1507.08188] the BESIII collaboration published a cross section measurement of the process $e^+e^-\to \pi^+ \pi^-$ in the energy range between 600 and 900 MeV. In this erratum we report a corrected evaluation of the statistical errors in terms of a fully propagated covariance matrix. The correction also yields a reduced statistical uncertainty for the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, which now reads as $a_\mu^{\pi\pi\mathrm{, LO}}(600 - 900\,\mathrm{MeV}) = (368.2 \pm 1.5_{\rm stat} \pm 3.3_{\rm syst})\times 10^{-10}$. The central values of the cross section measurement and of $a_\mu^{\pi\pi\mathrm{, LO}}$, as well as the systematic uncertainties remain unchanged.

10 data tables

Results of the BESIII measurement of the cross section $\sigma^{\rm bare}_{\pi^+\pi^-(\gamma_{\rm FSR})} \equiv \sigma^{\rm bare}(e^+e^-\rightarrow\pi^+\pi^-(\gamma_{\rm FSR}))$ and the squared pion form factor $|F_\pi|^2$. The errors are statistical only. The value of $\sqrt{s'}$ represents the bin center. The 0.9$\%$ systematic uncertainty is fully correlated between any two bins.

Results for the bare cross section $\sigma^\text{bare}_{\pi^+\pi^-}$ and the pion form factor together with their statistical uncertainties. The systematical uncertainties are given by 0.9% (see <a href="https://inspirehep.net/literature/1385603">arXiv:1507.08188</a>).

Bare cross section $\sigma^\mathrm{bare}(e^+e^-\to\pi^+\pi^-(\gamma_\mathrm{FSR}))$ of the process $e^+e^-\to\pi^+\pi^-$ measured using the initial state radiation method. The data is corrected concerning final state radiation and vacuum polarization effects. The final state radiation is added using the Schwinger term at born level.

More…

Study of the process e+e-\to \mu+\mu- in the energy region \sqrt{s}=980, 1040 -- 1380 MeV

Achasov, M.N. ; Aulchenko, V.M. ; Beloborodov, K.I. ; et al.
Phys.Rev.D 79 (2009) 112012, 2009.
Inspire Record 798415 DOI 10.17182/hepdata.50493

The cross section of the process e+e-\to\mu+\mu- was measured in the SND experiment at the VEPP-2M e+e- collider in the energy region \sqrt{s}=980, 1040 -- 1380 MeV. The event numbers of the process e+e-\to\mu+\mu- were normalized to the integrated luminosity measured using e+e-\to e+e- and e+e-\to\gamma\gamma processes. The ratio of the measured cross section to the theoretically predicted value is 1.006\pm 0.007 \pm 0.016 and 1.005 \pm 0.007 \pm 0.018 in the first and second case respectively. Using results of the measurements, the electromagnetic running coupling constant \alpha in the energy region \sqrt{s}=1040 -- 1380 MeV was obtained <1/\alpha> = 134.1\pm 0.5 \pm 1.2 and this is in agreement with theoretical expectation.

2 data tables

The E+ E- --> MU+ MU- cross section obtained using the (GAMMA GAMMA) luminosity measurement.

The measured E+ E- --> E+ E- cross section in the electron angle 30 to 150 degrees.


High-statistics measurement of the pion form factor in the rho-meson energy range with the CMD-2 detector

The CMD-2 collaboration Akhmetshin, R.R. ; Aulchenko, V.M. ; Banzarov, V.Sh. ; et al.
Phys.Lett.B 648 (2007) 28-38, 2007.
Inspire Record 728302 DOI 10.17182/hepdata.41782

We present a measurement of the pion form factor based on e+e- annihilation data from the CMD-2 detector in the energy range 0.6&lt;sqrt(s)&lt;1.0 GeV with a systematic uncertainty of 0.8%. A data sample is five times larger than that used in our previous measurement.

2 data tables

Measured values of the pion form factor. The errors are statistical only.

Measured value of the bare PI+ PI- cross section including corrections for radiative effects but excluding corrections for vacuum polarization effects. The errors are statistical only.


Measurement of the e+e- -> pi+pi- cross section with the CMD-2 detector in the 370-520 MeV c.m. energy range

Aul'chenko, V.M. ; Akhmetshin, R.R. ; Banzarov, V.Sh. ; et al.
JETP Lett. 84 (2006) 413-417, 2006.
Inspire Record 728191 DOI 10.17182/hepdata.41786

The cross section of the process e+e- -> pi+pi- has been measured at the CMD-2 detector in the 370-520 MeV center-of-mass (c.m.) energy range. A systematic uncertainty of the measurement is 0.7 %. Using all CMD-2 data on the pion form factor, the pion electromagnetic radius was calculated. The cross section of muon pair production was also determined.

3 data tables

The measured Born muon pair production cross section. Errors are statistical only.

The measured pion form factor. The errors are statistical only.

The measured bare PI+ PI- production cross section. This is corrected for radiative effects but excludes a correction for vacuum polarization effects. The errors are statistical only.


Inclusive Lambda/c production in e+ e- annihilations at s**(1/2) = 10.54-GeV and in Upsilon(4S) decays.

The BaBar collaboration Aubert, Bernard ; Bona, M. ; Boutigny, D. ; et al.
Phys.Rev.D 75 (2007) 012003, 2007.
Inspire Record 725377 DOI 10.17182/hepdata.22089

We present measurements of the total production rates and momentum distributions of the charmed baryon $\Lambda_c^+$ in $e^+e^- \to$ hadrons at a center-of-mass energy of 10.54 GeV and in $\Upsilon(4S)$ decays. In hadronic events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in $e^+e^- \to c\bar{c}$ events, allowing direct studies of $c$-quark fragmentation. We measure a momentum distribution for $\Lambda_c^+$ baryons that differs significantly from those measured previously for charmed mesons. Comparing with a number of models, we find none that can describe the distribution completely. We measure an average scaled momentum of $\left< x_p \right> = 0.574\pm$0.009 and a total rate of $N_{\Lambda c}^{q\bar{q}} = 0.057\pm$0.002(exp.)$\pm$0.015(BF) $\Lambda_c^+$ per hadronic event, where the experimental error is much smaller than that due to the branching fraction into the reconstructed decay mode, $pK^-\pi^+$. In $\Upsilon (4S)$ decays we measure a total rate of $N_{\Lambda c}^{\Upsilon} = 0.091\pm$0.006(exp.)$\pm$0.024(BF) per $\Upsilon(4S)$ decay, and find a much softer momentum distribution than expected from B decays into a $\Lambda_c^+$ plus an antinucleon and one to three pions.

4 data tables

LAMBDA/C+ differential production rate per hadronic event for the continuum at cm energy 10.54 GeV.

The integrated number of LAMBDA/C+'s per hadronic event for the continuum at cm energy 10.54 GeV.

LAMBDA/C+ differential production rate per UPSILON(4S) decay at cm energy 10.58 GeV.

More…

Study of the e+ e- --> eta gamma process with SND detector at the VEPP-2M e+ e- collider.

Achasov, M.N. ; Aulchenko, V.M. ; Beloborodov, K.I. ; et al.
Phys.Rev.D 74 (2006) 014016, 2006.
Inspire Record 717778 DOI 10.17182/hepdata.41804

In experiment with the SND detector at VEPP-2M $e^+e^-$ collider the $e^+e^-\to\eta\gamma$ cross section was measured in the energy range $E$=0.60--1.38 GeV with the integrated luminosity of 27.8 pb$^{-1}$. The measured cross section is well described by the vector meson dominance model with contributions from the $\rho(770)$, $\omega(783)$, $\phi(1020)$, $\rho^{\prime}(1465)$ resonances and agrees with results of previous measurements. The decay probabilities $\BR(\phi\to\eta\gamma)$, $\BR(\omega\to\eta\gamma)$ and $\BR(\rho\to\eta\gamma)$ were measured with the accuracies better than or comparable to the world averages.

2 data tables

Cross section from the ETA --> 3PI0 decay mode.

Cross section from the ETA --> PI+ PI- PI0 decay mode.


Version 2
Measurement of the pion form factor in the energy range 1.04-GeV - 1.38-GeV with the CMD-2 detector.

The CMD-2 collaboration Aul'chenko, V.M. ; Akhmetshin, R.R. ; Banzarov, V.Sh. ; et al.
JETP Lett. 82 (2005) 743-747, 2005.
Inspire Record 712216 DOI 10.17182/hepdata.41807

The cross section for the process $e^+e^-\to\pi^+\pi^-$ is measured in the c.m. energy range 1.04-1.38 GeV from 995 000 selected collinear events including 860000 $e^+e^-$ events, 82000 $\mu^+\mu^-$ events, and 33000 $\pi^+\pi^-$ events. The systematic and statistical errors of measuring the pion form factor are equal to 1.2-4.2 and 5-13%, respectively.

2 data tables

Measured value of the pion form factor with statistical errors only.

Measured value of the pion form factor


Study of the process e+ e- --> pi+ pi- in the energy region 400-MeV < s**(1/2) < 1000-MeV.

Achasov, M.N. ; Beloborodov, K.I. ; Berdyugin, A.V. ; et al.
J.Exp.Theor.Phys. 101 (2005) 1053-1070, 2005.
Inspire Record 686349 DOI 10.17182/hepdata.41873

The cross section of the process e^+e^-\to \pi^+\pi^- was measured in the SND experiment at the VEPP-2M collider in the energy region 400<\sqrt[]{s}<1000 MeV. This measurement was based on about 12.4 \times 10^6 selected collinear events, which include 7.4\times 10^6 e^+e^-\to e^+e^-, 4.5\times 10^6 e^+e^-\to\pi^+\pi^- and 0.5\times 10^6 e^+e^-\to\mu^+\mu^- selected events. The systematic uncertainty of the cross section determination is 1.3 %. The \rho-meson parameters were determined: m_\rho=774.9\pm 0.4\pm 0.5 MeV, \Gamma_\rho=146.5\pm 0.8\pm 1.5 MeV, \sigma(\rho\to\pi^+\pi^-)=1220\pm 7\pm 16 nb as well as the parameters of the G-parity suppressed decay \omega\to\pi^+\pi^-: \sigma(\omega\to\pi^+\pi^-)=29.9\pm 1.4\pm 1.0 nb and \phi_{\rho\omega} = 113.5\pm 1.3\pm 1.7 degree.

3 data tables

Cross section taking into account the radiative corrections due to the initial and final state radiation.

Cross section and form factor after the radiative corrections have been undressed.

Undressed cross without vacuum polarization but with the final state radiation.


Measurement of exclusive rho+ rho- production in mid-virtuality two-photon interactions and study of the gamma gamma* --> rho rho process at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 615 (2005) 19-30, 2005.
Inspire Record 680120 DOI 10.17182/hepdata.48814

Exclusive rho+rho- production in two-photon collisions between a quasi-real photon, gamma, and a mid-virtuality photon, gamma*, is studied with data collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* -> rho+ rho- process is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 0.2GeV^2 &lt; Q^2 &lt;0.85GeV^2 and 1.1GeV &lt; W_gg &lt; 3GeV. These results, together with previous L3 measurements of rho0 rho0 and rho+ rho- production, allow a study of the gamma gamma* -> rho rho process over the Q^2-region 0.2GeV^2 &lt; Q^2 &lt; 30 GeV^2.

4 data tables

Production cross section as a function of Q**2. Differential cross sectionsare corrected to the centre of each bin.

Production cross section for two-photon data as a function of Q**2.

Production cross section as a function of W.

More…

The e+ e- ---> pi+ pi- pi+ pi-, K+ K- pi+ pi-, and K+ K- K+ K- cross sections at center-of-mass energies 0.5-GeV to 4.5-GeV measured with initial-state radiation

The BaBar collaboration Aubert, Bernard ; Barate, R. ; Boutigny, D. ; et al.
Phys.Rev.D 71 (2005) 052001, 2005.
Inspire Record 676691 DOI 10.17182/hepdata.22111

We study the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-\gamma$, with a hard photon radiated from the initial state. About 60,000 fully reconstructed events have been selected from 89 $fb^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that these data can be compared with the corresponding direct $e^+e^-$ measurements. From the $4\pi$-mass spectrum, the cross section for the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-$ is measured for center-of-mass energies from 0.6 to 4.5 $GeV/c^2$. The uncertainty in the cross section measurement is typically 5%. We also measure the cross sections for the final states $K^+ K^- \pi^+\pi^-$ and $K^+ K^- K^+ K^-$. We observe the $J/\psi$ in all three final states and measure the corresponding branching fractions. We search for X(3872) in $J/\psi (\to\mu^+\mu^-) \pi^+\pi^-$ and obtain an upper limit on the product of the $e^+e^-$ width of the X(3872) and the branching fraction for $X(3872) \to J/\psi\pi^+\pi^-$.

3 data tables

Measured PI+ PI- PI+ PI- cross sections. The errors are statistical only.

Measured K+ K- PI+ PI- cross sections. The errors are statistical only.

Measured K+ K- K+ K- cross sections. The errors are statistical only.