Version 4
Measurement of the $\mathrm e^+\mathrm e^-\rightarrow\mathrm\pi^+\mathrm\pi^-$ Cross Section between 600 and 900 MeV Using Initial State Radiation

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Adlarson, P. ; et al.
Phys.Lett.B 753 (2016) 629-638, 2016.
Inspire Record 1385603 DOI 10.17182/hepdata.73898

In Phys. Lett. B 753, 629-638 (2016) [arXiv:1507.08188] the BESIII collaboration published a cross section measurement of the process $e^+e^-\to \pi^+ \pi^-$ in the energy range between 600 and 900 MeV. In this erratum we report a corrected evaluation of the statistical errors in terms of a fully propagated covariance matrix. The correction also yields a reduced statistical uncertainty for the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, which now reads as $a_\mu^{\pi\pi\mathrm{, LO}}(600 - 900\,\mathrm{MeV}) = (368.2 \pm 1.5_{\rm stat} \pm 3.3_{\rm syst})\times 10^{-10}$. The central values of the cross section measurement and of $a_\mu^{\pi\pi\mathrm{, LO}}$, as well as the systematic uncertainties remain unchanged.

4 data tables

Bare cross section $\sigma^\mathrm{bare}(e^+e^-\to\pi^+\pi^-(\gamma_\mathrm{FSR}))$ of the process $e^+e^-\to\pi^+\pi^-$ measured using the initial state radiation method. The data is corrected concerning final state radiation and vacuum polarization effects. The final state radiation is added using the Schwinger term at born level.

Statistical covariance matrix of the bare cross section $\sigma^\mathrm{bare}(e^+e^-\to\pi^+\pi^-(\gamma_\mathrm{FSR}))$.

Pion form factor $|F_\pi|^2$ measured using the initial state radiation method. The data is corrected concerning vacuum polarization effects.

More…

Version 2
Precise Measurement of the $e^+ e^- \to \pi^+\pi^- (\gamma)$ Cross Section with the Initial-State Radiation Method at BABAR

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 86 (2012) 032013, 2012.
Inspire Record 1114155 DOI 10.17182/hepdata.115140

A precise measurement of the cross section of the process $e^+e^-\to\pi^+\pi^-(\gamma)$ from threshold to an energy of 3GeV is obtained with the initial-state radiation (ISR) method using 232fb$^{-1}$ of data collected with the BaBar detector at $e^+e^-$ center-of-mass energies near 10.6GeV. The ISR luminosity is determined from a study of the leptonic process $e^+e^-\to\mu^+\mu^-(\gamma)\gamma_{\rm ISR}$, which is found to agree with the next-to-leading-order QED prediction to within 1.1%. The cross section for the process $e^+e^-\to\pi^+\pi^-(\gamma)$ is obtained with a systematic uncertainty of 0.5% in the dominant $\rho$ resonance region. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured $\pi\pi$ cross section from threshold to 1.8GeV is $(514.1 \pm 2.2({\rm stat}) \pm 3.1({\rm syst}))\times 10^{-10}$.

3 data tables

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ The cross section values (nb) for 337 CM energy intervals (GeV) from 0.3 to 3 GeV. The cross section is bare (excluding vacuum polarization) and includes the emission of final state photons. ***WARNING*** The quoted errors are from the diagonal elements of the statistical covariance matrix (reported on the Table titled "Bare cross-section statistical covariance") and added quadratically with the systematic uncertainties (reported in the Table titled "Bare cross-section systematic uncertainties"). These errors can be used when plotting the results as they are representative of the precision achieved. However, any calculation involving the cross section over some energy range MUST use, to be meaningful, the full statistical covariance matrix and the proper correlations of the systematic uncertainties. ***WARNING*** The Bare cross-section statistical covariance is reported as additional resource in YAML, since its size exceeds the maximum size of 10 MB for the library hepdata_lib. It is a statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV, matching the ones of this table.

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ systematic uncertainties contributions and total systematic uncertainties, for 337 CM energy intervals (GeV), from 0.3 to 3 GeV. All systematics contributions are each 100% correlated in all energy bins.

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV.


Inclusive Lambda/c production in e+ e- annihilations at s**(1/2) = 10.54-GeV and in Upsilon(4S) decays.

The BaBar collaboration Aubert, Bernard ; Bona, M. ; Boutigny, D. ; et al.
Phys.Rev.D 75 (2007) 012003, 2007.
Inspire Record 725377 DOI 10.17182/hepdata.22089

We present measurements of the total production rates and momentum distributions of the charmed baryon $\Lambda_c^+$ in $e^+e^- \to$ hadrons at a center-of-mass energy of 10.54 GeV and in $\Upsilon(4S)$ decays. In hadronic events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in $e^+e^- \to c\bar{c}$ events, allowing direct studies of $c$-quark fragmentation. We measure a momentum distribution for $\Lambda_c^+$ baryons that differs significantly from those measured previously for charmed mesons. Comparing with a number of models, we find none that can describe the distribution completely. We measure an average scaled momentum of $\left< x_p \right> = 0.574\pm$0.009 and a total rate of $N_{\Lambda c}^{q\bar{q}} = 0.057\pm$0.002(exp.)$\pm$0.015(BF) $\Lambda_c^+$ per hadronic event, where the experimental error is much smaller than that due to the branching fraction into the reconstructed decay mode, $pK^-\pi^+$. In $\Upsilon (4S)$ decays we measure a total rate of $N_{\Lambda c}^{\Upsilon} = 0.091\pm$0.006(exp.)$\pm$0.024(BF) per $\Upsilon(4S)$ decay, and find a much softer momentum distribution than expected from B decays into a $\Lambda_c^+$ plus an antinucleon and one to three pions.

4 data tables

LAMBDA/C+ differential production rate per hadronic event for the continuum at cm energy 10.54 GeV.

The integrated number of LAMBDA/C+'s per hadronic event for the continuum at cm energy 10.54 GeV.

LAMBDA/C+ differential production rate per UPSILON(4S) decay at cm energy 10.58 GeV.

More…

Measurement and QCD analysis of the diffractive deep-inelastic scattering cross-section at HERA

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 48 (2006) 715-748, 2006.
Inspire Record 718190 DOI 10.17182/hepdata.45892

A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|<1 {\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \leq Q^2 \leq 1600 \rm GeV^2$, triple differentially in $\xpom$, $Q^2$ and $\beta = x / \xpom$, where $x$ is the Bjorken scaling variable. At low $\xpom$, the data are consistent with a factorisable $\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\alphapom(0)= 1.118 \pm 0.008 {\rm (exp.)} ^{+0.029}_{-0.010} {\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\beta$ dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the $Q^2$ range studied. Total and differential cross sections are also measured for the diffractive charged current process $e^+ p \to \bar{\nu}_e XY$ and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current $ep$ cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on $Q^2$ at fixed $\xpom$ and $x$ or on $x$ at fixed $Q^2$ and $\beta$.

22 data tables

Reduced cross section from the Minimum Bias data sample taken in 1997.

Reduced cross section from the Minimum Bias data sample taken in 1997.

Reduced cross section from the complete ('all') data sample taken in 1997.

More…

The e+ e- ---> pi+ pi- pi+ pi-, K+ K- pi+ pi-, and K+ K- K+ K- cross sections at center-of-mass energies 0.5-GeV to 4.5-GeV measured with initial-state radiation

The BaBar collaboration Aubert, Bernard ; Barate, R. ; Boutigny, D. ; et al.
Phys.Rev.D 71 (2005) 052001, 2005.
Inspire Record 676691 DOI 10.17182/hepdata.22111

We study the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-\gamma$, with a hard photon radiated from the initial state. About 60,000 fully reconstructed events have been selected from 89 $fb^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that these data can be compared with the corresponding direct $e^+e^-$ measurements. From the $4\pi$-mass spectrum, the cross section for the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-$ is measured for center-of-mass energies from 0.6 to 4.5 $GeV/c^2$. The uncertainty in the cross section measurement is typically 5%. We also measure the cross sections for the final states $K^+ K^- \pi^+\pi^-$ and $K^+ K^- K^+ K^-$. We observe the $J/\psi$ in all three final states and measure the corresponding branching fractions. We search for X(3872) in $J/\psi (\to\mu^+\mu^-) \pi^+\pi^-$ and obtain an upper limit on the product of the $e^+e^-$ width of the X(3872) and the branching fraction for $X(3872) \to J/\psi\pi^+\pi^-$.

3 data tables

Measured PI+ PI- PI+ PI- cross sections. The errors are statistical only.

Measured K+ K- PI+ PI- cross sections. The errors are statistical only.

Measured K+ K- K+ K- cross sections. The errors are statistical only.


Study of e+ e- ---> pi+ pi- pi0 process using initial state radiation with BABAR

The BaBar collaboration Aubert, Bernard ; Barate, R. ; Boutigny, D. ; et al.
Phys.Rev.D 70 (2004) 072004, 2004.
Inspire Record 656680 DOI 10.17182/hepdata.41884

The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum we have obtained the products of branching fractions for the omega and phi mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range 1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18 +/- 0.19)% has been measured.

1 data table

The measured 3PI mass spectrum calculated for a 25 MeV bin size.


Measurement of isolated prompt photon production in photon photon collisions at s(ee)**(1/2) = 183-GeV - 209-GeV.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 31 (2003) 491-502, 2003.
Inspire Record 619533 DOI 10.17182/hepdata.48831

For the first time at LEP the production of prompt photons is studied in the collisions of quasi-real photons using the OPAL data taken at e+e- centre-of-mass energies between 183 GeV and 209 GeV. The total inclusive production cross-section for isolated prompt photons in the kinematic range of photon transverse momentum larger than 3.0 GeV and absolute photon pseudorapidity less than 1 is determined to be 0.32 +- 0.04 (stat) +- 0.04 (sys) pb. Differential cross-sections are compared to the predictions of a next-to-leading-order (NLO) calculation.

5 data tables

The total prompt photon cross section in the kinematic range defined by theanti tagging condition.

Differential cross section in PT.

Differential cross section in ETARAP.

More…

Di-jet production in photon photon collisions at s(ee)**(1/2) = from 189-GeV to 209-GeV.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 31 (2003) 307-325, 2003.
Inspire Record 611415 DOI 10.17182/hepdata.49662

Di-jet producion is studied in collisions of quasi-real photons at e+e- centre- of-mass energies sqrt(s)ee from 189 to 209 GeV at LEP. The data were collected with the OPAL detector. Jets are reconstructed using an inclusive k_t clustering algorithm for all cross-section measurements presented. A cone jet algorithm is used in addition to study the different structure of the jets resulting from either of the algorithms. The inclusive di-jet cross-section is measured as a function of the mean transverse energy Etm(jet) of the two leading jets, and as a functiuon of the estimated fraction of the photon momentum carried by the parton entering the hard sub-process, xg, for different regions of Etm (jet). Angular distribution in di-jet events are measured and used to demonstrate the dominance of quark and gluon initiated processes in different regions of phase space. Furthermore the inclusive di-jet cross-section as a function of |eta(jet)| and |delta eta (jet)| is presented where eta(jet) is the jet pseudo-rapidity. Different regions of the xg+ -xg- -space are explored to study and control the influence of an underlying event. The results are compared to next-to-leading order perturbative QCD calculations and to the predictions of the leading order Monte Carlo generator PYTHIA.

21 data tables

The di-jet cross section as a function of the angle between the jet and thedirection of the incoming parton in the centre-of-mass frame for the region whe re both X(C=GAMMA+) and X(C=GAMMA-) are > 0.75.

The di-jet cross section as a function of the angle between the jet and thedirection of the incoming parton in the centre-of-mass frame for the region whe re both X(C=GAMMA+) and X(C=GAMMA-) are < 0.75.

The di-jet cross section as a function of the mean transverse energy of thedi-jet system for the full X(C=GAMMA+) and X(C=GAMMA-) region.

More…

Measurement of proton dissociative diffractive photoproduction of vector mesons at large momentum transfer at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Eur.Phys.J.C 26 (2003) 389-409, 2003.
Inspire Record 587202 DOI 10.17182/hepdata.46584

Diffractive photoproduction of vector mesons, gamma p --> V Y, where Y is a proton-dissociative system, has been measured in ep interactions with the ZEUS detector at HERA using an integrated luminosity of 25 pb^-1. The differential cross section, ds/dt, is presented for -t<12 GeV^2, where t is the square of the four-momentum transferred to the vector meson. The data span the range in photon-proton centre-of-mass energy, W, from 80 GeV to 120 GeV. The t distributions are well fit by a power law, ds/dt ~ (-t)^{-n}. The slope of the Pomeron trajectory, measured from the W dependence of the rho^0 and phi cross sections in bins of t, is consistent with zero. The ratios ds_(gamma p --> phi Y)/dt to ds_(gamma p --> rho^0 Y)/dt and ds_(gamma p --> J/psi Y)/dt to ds_(gamma p --> rho^0 Y)/dt increase with increasing -t. Decay-angle analyses for rho^0, phi and J/psi mesons have been carried out. For the rho^0 and phi mesons, contributions from single and double helicity flip are observed. The results are compared to expectations of theoretical models.

8 data tables

Differential cross section for RHO0 production. The second DSYS error is due to the modelling of the proton-dissociation process.

Differential cross section for PHI production. The second DSYS error is due to the modelling of the proton-dissociation process.

Differential cross section for J/PSI production. The second DSYS error is due to the modelling of the proton-dissociation process.

More…

Leading neutron production in e+ p collisions at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Nucl.Phys.B 637 (2002) 3-56, 2002.
Inspire Record 587158 DOI 10.17182/hepdata.46613

The production of neutrons carrying at least 20% of the proton beam energy ($\xl > 0.2$) in $e^+p$ collisions has been studied with the ZEUS detector at HERA for a wide range of $Q^2$, the photon virtuality, from photoproduction to deep inelastic scattering. The neutron-tagged cross section, $e p\to e' X n$, is measured relative to the inclusive cross section, $e p\to e' X$, thereby reducing the systematic uncertainties. For $\xl >$ 0.3, the rate of neutrons in photoproduction is about half of that measured in hadroproduction, which constitutes a clear breaking of factorisation. There is about a 20% rise in the neutron rate between photoproduction and deep inelastic scattering, which may be attributed to absorptive rescattering in the $\gamma p$ system. For $0.64 < \xl < 0.82$, the rate of neutrons is almost independent of the Bjorken scaling variable $x$ and $Q^2$. However, at lower and higher $\xl$ values, there is a clear but weak dependence on these variables, thus demonstrating the breaking of limiting fragmentation. The neutron-tagged structure function, ${{F}^{\rm\tiny LN(3)}_2}(x,Q^2,\xl)$, rises at low values of $x$ in a way similar to that of the inclusive \ff of the proton. The total $\gamma \pi$ cross section and the structure function of the pion, $F^{\pi}_2(x_\pi,Q^2)$ where $x_\pi = x/(1-\xl)$, have been determined using a one-pion-exchange model, up to uncertainties in the normalisation due to the poorly understood pion flux. At fixed $Q^2$, $F^{\pi}_2$ has approximately the same $x$ dependence as $F_2$ of the proton.

18 data tables

The XL bins, their acceptance and the acceptance uncertainty. The RH columnshows the contribution from the energy-scale uncertainty - this is completely c orrelated between the bins.

The slope of the PT**2 distribution from the 1995 DIS data. The uncertainties shown in this table were communicated to us by the authors, and supercede those given in the paper.

The normalized cross section (1/SIG)DSIG/dXL for leading neutrons with THETA < 0.8 mrad with statistical errors only.. For the lowest Q**2 data, the normalization uncertainty is +-5 PCT, and with XL > 0.52 there is a further normalization uncertainty of +-4 PCT.. For the intermediate Q**2 and DIS data the normalization uncertainty is +-4 PCT.

More…