We present new measurements of differential cross sections for Z/gamma*(->mumu)+jet+X production in a 1 fb-1 data sample collected with the D0 detector in proton anti-proton collisions at sqrt{s}=1.96 TeV. Results include the first measurements differential in the Z/gamma* transverse momentum and rapidity, as well as new measurements differential in the leading jet transverse momentum and rapidity. Next-to-leading order perturbative QCD predictions are compared to the measurements, and reasonable agreement is observed, except in the region of low Z/gamma* transverse momentum. Predictions from two event generators based on matrix elements and parton showers, and one pure parton shower event generator are also compared to the measurements. These show significant overall normalization differences to the data and have varied success in describing the shape of the distributions.
Measured cross section as a function of the jet transverse momentum.
Measured cross section as a function of the jet rapidity.
Measured cross section as a function of the Z0 transverse momentum.
We present a measurement of the shape of the Z/gamma* boson transverse momentum (qT) distribution in ppbar -> Z/gamma* -> ee+X events at a center-of-mass energy of 1.96 TeV using 0.98 fb-1 of data collected with the D0 detector at the Fermilab Tevatron collider. The data are found to be consistent with the resummation prediction at low qT, but above the perturbative QCD calculation in the region of qT>30 GeV/c. Using events with qT<30 GeV/c, we extract the value of g2, one of the non-perturbative parameters for the resummation calculation. Data at large boson rapidity y are compared with the prediction of resummation and with alternative models that employ a resummed form factor with modifications in the small Bjorken x region of the proton wave function.
Normalized differential transverse momentum spectrum for Z0/GAMMA* events.
Correlation matrix for all rapidity Z bosons for the 12 bins used for PT < 30.
Normalized differential transverse momentum spectrum for Z0/GAMMA* events for the absolute rapidity region > 2 and PT < 30 GeV.
The inclusive production of charged hadrons in the collisions of quasi-real photons e+e- -> e+e- +X has been measured using the OPAL detector at LEP. The data were taken at e+e- centre-of-mass energies from 183 to 209 GeV. The differential cross-sections as a function of the transverse momentum and the pseudorapidity of the hadrons are compared to theoretical calculations of up to next-to-leading order (NLO) in the strong coupling constant alpha{s}. The data are also compared to a measurement by the L3 Collaboration, in which a large deviation from the NLO predictions is observed.
Differential inclusive charged hadron production cross section as a function of PT.
Differential inclusive charged hadron production cross section as a function of PT.
Differential inclusive charged hadron production cross section as a function of PT.
For the first time at LEP the production of prompt photons is studied in the collisions of quasi-real photons using the OPAL data taken at e+e- centre-of-mass energies between 183 GeV and 209 GeV. The total inclusive production cross-section for isolated prompt photons in the kinematic range of photon transverse momentum larger than 3.0 GeV and absolute photon pseudorapidity less than 1 is determined to be 0.32 +- 0.04 (stat) +- 0.04 (sys) pb. Differential cross-sections are compared to the predictions of a next-to-leading-order (NLO) calculation.
The total prompt photon cross section in the kinematic range defined by theanti tagging condition.
Differential cross section in PT.
Differential cross section in ETARAP.
The inclusive production of D*+- mesons in photon-photon collisions has been measured using the OPAL detector at LEP at e+e- centre-of-mass energies of 183 and 189GeV. The D* mesons are reconstructed in their decay to D0pi+ with the D0 observed in the two decay modes Kpi+ and Kpi+pi-pi+. After background subtraction, 100.4+-12.6(stat) D*+- mesons have been selected in events without observed scattered beam electron ("anti-tagged") and 29.8+-5.9 (stat) D*+- mesons in events where one beam electron is scattered into the detector ("single-tagged"). Direct and single-resolved events are studied separately. Differential cross-sections as functions of the D* transverse momentum p_t and pseudorapidity \eta are presented in the kinematic region 2
Differential PT distribution for anti-tagged events for both D* decay modesand combined.
Differential ETARAP distribution for anti-tagged events for both D* decay modes and combined.
Integrated cross section using the anti-tagged events for D* production in the kinematic range of the experiment.
The production of charged hadrons and K_s mesons in the collisions of quasi-real photons has been measured using the OPAL detector at LEP. The data were taken at e+e- centre-of-mass energies of 161 and 172 GeV. The differential cross-sections as a function of the transverse momentum and the pseudorapidity of the charged hadrons and K_s mesons have been compared to the leading order Monte Carlo simulations of PHOJET and PYTHIA and to perturbative next-to-leading order (NLO) QCD calculations. The distributions have been measured in the range 10-125 GeV of the hadronic invariant mass W. By comparing the transverse momentum distribution of charged hadrons measured in gamma-gamma interactions with gamma-proton and meson-proton data we find evidence for hard photon interactions in addition to the purely hadronic photon interactions.
No description provided.
No description provided.
No description provided.
We present measurements from events with two isolated prompt photons in p¯p collisions at √s =1.8 TeV. The differential cross section, measured as a function of transverse momentum (PT) of each photon, is about 3 times what next-to-leading-order QCD calculations predict. The cross section for photons with PT in the range 10–19 GeV is 86±27(stat)−23+32(syst) pb. We also study the correlation between the two photons in both azimuthal angle and PT. The magnitude of the vector sum of the transverse momenta of both photons, KT=‖PT1+PT2‖, has a mean value of 〈KT〉=5.1±1.1 GeV.
No description provided.
No description provided.
Vector sum of the photons transvserse momenta.. Errors contain both statistics and systematics.. Data read from plots.
Inclusive J/ψ and ψ(2S) production has been studied in p¯p collisions at √s =1.8 TeV using 2.6±0.2 pb−1 of data taken with the Collider Detector at Fermilab. The products of production cross section times branching fraction were measured as functions of PT for J/ψ→μ+μ− and ψ(2S)→μ+μ−. In the kinematic range PT>6 GeV/c and ‖η‖≤0.5 we get σ(p¯p→J/ψ X)B(J/ψ→μ+μ−) =6.88±0.23(stat)−1.08+0.93(syst) nb, and σ(p¯p→ψ(2S)X)B(ψ(2S)→μ+μ−) =0.232±0.051(stat)−0.032+0.029(syst)nb. From these values we calculate the inclusive b-quark production cross section.
Cross section times the branching ratio into mu+ mu- pairs.
Cross section times the branching ratio into mu+ mu- pairs.
.
We have measured the Z-boson production differential cross section as a function of transverse momentum using Z→ee and Z→μμ decays in p¯p collision at √s =1.8 TeV with the Collider Detector at Fermilab. Comparison with standard-model predictions shows good agreement over the range 0
Errors are systematic and statistical combined, and are correlated bin to bin due to the correction for resolution smearing.
Using the Collider Detector at Fermilab, the W-boson differential cross section dσ/dPT is measured using W→eν events in proton-antiproton collisions at √s =1.8 TeV. A next-to-leading-order theoretical calculation agrees well with the data. The cross section (σ) for PT>50 GeV/c is measured to be 423±58(stat)±108(syst) pb.
No description provided.
No description provided.