rho^0 Photoproduction in Ultra-Peripheral Relativistic Heavy Ion Collisions with STAR

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 77 (2008) 034910, 2008.
Inspire Record 771169 DOI 10.17182/hepdata.98962

Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR collaboration presents a measurement of rho^0 and direct pi^+pi^- photoproduction in ultra-peripheral relativistic heavy ion collisions at sqrt(s_{NN})=200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross-section of sigma(AuAu) -> Au^*Au^*rho^0 = 530 pm 19 (stat.) pm 57 (syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The rho^0 transverse momentum spectrum (p_{T}^2) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus/ we find sigma_{inc}/sigma_{coh} = 0.29 pm 0.03 (stat.) pm 0.08 (syst.). The ratio of direct pi^+pi^- to rho^0 production is comparable to that observed in gamma p collisions at HERA, and appears to be independent of photon energy. Finally, the measured rho^0 spin helicity matrix elements agree within errors with the expected s-channel helicity conservation.

10 data tables

ZDC spectra obtained with the minimum bias sample after the $\rho^{0}$ selection cuts are applied, and fit with three Gaussians. The east ZDC is shown on the left and the west ZDC is shown on the right. The ratio of numbers of candidates in the West ZDC of 1n:2n:3n is 1: 0.48 $\pm$ 0.03: 0.42 $\pm$ 0.03, while in the East ZDC, we find 1n:2n:3n is 1: 0.46 $\pm$ 0.03: 0.42 $\pm$ 0.03.

ZDC spectra obtained with the minimum bias sample after the $\rho^{0}$ selection cuts are applied, and fit with three Gaussians. The east ZDC is shown on the left and the west ZDC is shown on the right. The ratio of numbers of candidates in the West ZDC of 1n:2n:3n is 1: 0.48 $\pm$ 0.03: 0.42 $\pm$ 0.03, while in the East ZDC, we find 1n:2n:3n is 1: 0.46 $\pm$ 0.03: 0.42 $\pm$ 0.03.

The invariant mass distribution for the coherently produced $\rho^{0}$ candidates from the minimum bias sample with the cut on the $\rho^{0}$ transverse momentum $p_{T}$ < 150 MeV/c. The hatched area is the contribution from the combinatorial background. The solid line corresponds to Eq. 3 which encompasses the Breit-Wigner (dashed), the mass independent contribution from the direct $\pi^{+}\pi^{-}$ production (dash-dotted), and the interference term(dotted).

More…

W pair production cross-section and W branching fractions in e+ e- interactions at 189-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 479 (2000) 89-100, 2000.
Inspire Record 526222 DOI 10.17182/hepdata.49983

The cross-section for the process e+e- -> W+W- has been measured with the data sample collected by DELPHI at an average centre-of-mass energy of 189 GeV and corresponding to an integrated luminosity of 155 pb^{-1}. Based on the 2392 events selected as WW candidates, the cross-section for the doubly resonant process e+e- -> W+W- has been measured to be 15.83 +- 0.38 (stat) +- 0.20 (syst) pb. The branching fractions of the W decay were also measured and found to be in good agreement with the Standard Model expectation. From these a value of the CKM mixing matrix element |V_{cs}| = 1.001 +- 0.040 (stat) +- 0.020 (syst) was derived.

2 data tables

Total W+ W- production cross section.

Cross section for the different decay channels.


W pair production cross-section and W branching fractions in e+ e- interactions at 183-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 456 (1999) 310-321, 1999.
Inspire Record 499181 DOI 10.17182/hepdata.49182

The cross-section for the process e + e − → W + W − has been measured with the data sample collected by DELPHI at an average centre-of-mass energy of 182.65 GeV and corresponding to an integrated luminosity of 53 pb −1 . Based on the 770 events selected as WW candidates, the cross-section for the doubly resonant process σ(e + e − →W + W − )=15.86 ±0.69 (stat) ±0.26 (syst) pb has been measured and found to be in good agreement with the Standard Model expectation. The branching fractions of the W decay were also measured. From these a value of the CKM mixing matrix element |V cs |=0.985±0.073 (stat) ±0.025 (syst) was derived. Our previously published WW cross-section measurements and the derived measurement of m W have been revised and updated with the present cross-section measurement to yield m W =80.49±0.43 (stat) ±0.09( syst )±0.03( LEP ) GeV /c 2 .

2 data tables

No description provided.

VCB is the KCM matrix element.


Upper limit for the decay B- ---> tau- anti-neutrino (tau) and measurement of the b ---> tau anti-neutrino (tau) X branching ratio

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 496 (2000) 43-58, 2000.
Inspire Record 511452 DOI 10.17182/hepdata.49004

The branching ratio for the leptonic decay of charged B mesons ( B − →τ − ν ̄ τ ) has been measured using selected leptonic τ − →ℓ − ν τ ν ̄ ℓ and hadronic τ − → ν τ X decays in Z → b b ̄ decays recorded by DELPHI at LEP1 in 1992–1995. The result, BR ( B − →τ − ν ̄ τ )<1.1×10 −3 at the 90% confidence level, is consistent with standard model expectations and puts a constraint on the ratio tan β / M H ± <0.46 (GeV/ c 2 ) −1 in the framework of models with two Higgs doublets (type II Higgs doublet model). From the missing energy distribution in Z → b b ̄ decays without identified leptons, the b →τ ν ̄ τ X branching ratio has been measured in the hadronic channel τ → ν τ X′. The result, BR ( b →τ ν ̄ τ X )=(2.19±0.24 ( stat )±0.39 ( syst ))% , is consistent with the Standard Model prediction and with previous experimental measurements.

1 data table

TAN(BETA) is the two-Higgs-doublet model parameter, while M_H is the mass of charged Higgs.


Update of electroweak parameters from Z decays

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 60 (1993) 71-82, 1993.
Inspire Record 354298 DOI 10.17182/hepdata.47312

Based on 520 000 fermion pairs accumulated during the first three years of data collection by the ALEPH detector at LEP, updated values of the resonance parameters of theZ are determined to beMZ=(91.187±0.009) GeV, ΓZ=(2.501±0.012) GeV, σhad0=(41.60±0.27) nb, andRℓ=20.78±0.13. The corresponding number of light neutrino species isNν=2.97±0.05. The forward-backward asymmetry in lepton-pair decays is used to determine the ratio of vector to axial-vector couplings of leptons:gV2(MZ2)/gA2(MZ2)=0.0052±0.0016. Combining this with ALEPH measurements of theb andc quark asymmetries and τ polarization gives sin2θWeff=0.2326±0.0013. Assuming the minimal Standard Model, and including measurements ofMW/MZ fromp\(\bar p\) colliders and neutrino-nucleon scattering, the mass of the top quark is\(M_{top} = 156 \pm \begin{array}{*{20}c} {22} \\ {25} \\ \end{array} \pm \begin{array}{*{20}c} {17} \\ {22Higgs} \\ \end{array} \) GeV.

15 data tables

Data from 1990 running period.

Data from 1990 running period.

Data from 1990 running period.

More…

Tuning and test of fragmentation models based on identified particles and precision event shape data.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1996) 11-60, 1996.
Inspire Record 424112 DOI 10.17182/hepdata.47800

Event shape and charged particle inclusive distributions are measured using 750000 decays of the Z to hadrons from the DELPHI detector at LEP. These precise data allow a decisive confrontation with models of the hadronization process. Improved tunings of the JETSET, ARIADNE and HERWIG parton shower models and the JETSET matrix element model are obtained by fitting the models to these DELPHI data as well as to identified particle distributions from all LEP experiments. The description of the data distributions by the models is critically reviewed with special importance attributed to identified particles.

56 data tables

Transverse momentum PTIN w.r.t. the Thrust axis. For the first table Thrust axis definition is from seen charged particles corrected to final state particles. For the second table Thrust axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.

Transverse momentum PTOUT w.r.t. the Thrust axis. For the first table Thrust axis definition is from seen charged particles corrected to final state particles. For the second table Thrust axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.

Transverse momentum PTIN w.r.t. the Sphericity axis. For the first table Sphericity axis definition is from seen charged particles corrected to final state particles. For the second table Sphericity axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.

More…

Transverse-momentum p(t) correlations on (eta,Phi) from mean-p(t) fluctuations in Au - Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
J.Phys.G 32 (2006) L37-L48, 2006.
Inspire Record 693136 DOI 10.17182/hepdata.102092

We present first measurements of the pseudorapidity and azimuth $(\eta,\phi)$ bin-size dependence of event-wise mean transverse momentum $<p_{t} >$ fluctuations for Au-Au collisions at $\sqrt{s_{NN}} = 200$ GeV. We invert that dependence to obtain $p_t$ autocorrelations on differences $(\eta_\Delta,\phi_\Delta)$ interpreted to represent velocity/temperature distributions on ($\eta,\phi$). The general form of the autocorrelations suggests that the basic correlation mechanism is parton fragmentation. The autocorrelations vary strongly with collision centrality, which suggests that fragmentation is strongly modified by a dissipative medium in the more central

1 data table

Correlation amplitudes $B_{1}, B_{2}, B_{3}$ as well as positive-peak widths for pseudorapidity ($\sigma_{\eta_{1}}$) and azimuth ($\sigma_{\phi_{1}}$), plotted on mean participant path length $\nu$.


Transverse-momentum dependent modification of dynamic texture in central Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 71 (2005) 031901, 2005.
Inspire Record 653628 DOI 10.17182/hepdata.102943

Correlations in the hadron distributions produced in relativistic Au+Au collisions are studied in the discrete wavelet expansion method. The analysis is performed in the space of pseudorapidity (|eta| < 1) and azimuth (full 2 pi) in bins of transverse momentum (p_t) from 0.14 < p_t < 2.1 GeV/c. In peripheral Au+Au collisions a correlation structure ascribed to mini-jet fragmentation is observed. It evolves with collision centrality and p_t in a way not seen before which suggests strong dissipation of minijet fragmentation in the longitudinally-expanding medium.

10 data tables

Normalized dynamic texture for fineness scale m = 0

Normalized dynamic texture for fineness scale m = 1

Normalized dynamic texture for fineness scale m = 0

More…

Transverse momentum correlations and minijet dissipation in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
J.Phys.G 34 (2007) 799-816, 2007.
Inspire Record 656302 DOI 10.17182/hepdata.102087

Measurements of two-particle correlations on transverse momentum $p_t$ for Au-Au collisions at $\sqrt{s_{NN}} = 130$ GeV are presented. Significant large-momentum-scale correlations are observed for charged primary hadrons with $0.15 \leq p_t \leq 2$ GeV/$c$ and pseudorapidity $|\eta| \leq 1.3$. Such correlations were not observed in a similar study at lower energy and are not predicted by theoretical collision models. Their direct relation to mean-$p_t$ fluctuations measured in the same angular acceptance is demonstrated. Positive correlations are observed for pairs of particles which have large $p_t$ values while negative correlations occur for pairs in which one particle has large $p_t$ and the other has much lower $p_t$. The correlation amplitudes per final state particle increase with collision centrality. The observed correlations are consistent with a scenario in which the transverse momentum of hadrons associated with initial-stage semi-hard parton scattering is dissipated by the medium to lower $p_t$.

4 data tables

Symmetrized pair-density net ratios $\widehat{r} [X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for most-central Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.

Symmetrized pair-density net ratios $\widehat{r}[X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for mid-central Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.

Symmetrized pair-density net ratios $\widehat{r}[X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for mid-peripheral Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.

More…

Total cross-section in gamma gamma collisions at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 519 (2001) 33-45, 2001.
Inspire Record 552997 DOI 10.17182/hepdata.49853

The reaction e+e- -> e+e- gamma* gamma* -> e+e- hadrons for quasi-real photons is studied using data from root(s) = 183 GeV up to 202 GeV. Results on the total cross sections sigma(e+e- -> e+e- hadrons) and sigma(+e- gamma* gamma* -> e+e- hadrons) are given for the two-photon centre-of-mass energies 5 GeV &lt; Wgammagamma &lt; 185 GeV. The total cross section of two real photons is described by a Regge parametrisation. We observe a steeper rise with the two-photon centre-of-mass energy as compared to the hadron-hadron and the photon-proton cross sections. The data are also compared to the expectations of different theoretical models.

2 data tables

The measured total cross section for E+ E- --> E+ E- HADRONS. The first DSYS error is the total experimental systematic uncertainty and the second DSYS error is the uncertainty introduced by unfolding the data with PYTHIA and PHOJET corrections seperately.

The total cross section for two photon production of hadrons. The final column gives the data averaged over all energies together with the experimental systematic error (first DSYS) and the difference between the average and the data unfolded with PHOJET (lower sign) and PYTHIA (upper sign) seperately (second DSYS).