The inclusive charged particle transverse momentum distribution is measured in proton-proton collisions at $\sqrt{s} = 900$ GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region $(|\eta|<0.8)$ over the transverse momentum range $0.15<p_{\rm T}<10$ GeV/$c$. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for $|\eta|<0.8$ is $\left<p_{\rm T}\right>_{\rm INEL}=0.483\pm0.001$ (stat.) $\pm0.007$ (syst.) GeV/$c$ and $\left<p_{\rm T}\right>_{\rm NSD}=0.489\pm0.001$ (stat.) $\pm0.007$ (syst.) GeV/$c$, respectively. The data exhibit a slightly larger $\left<p_{\rm T}\right>$ than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET.
Average transverse momentum, including extrapolation to PT=0, for inelastic (INEL) events.
Average transverse momentum, including extrapolation to PT=0, for non-single diffractive (NSD) events.
Power law fit to spectrum for PT > 3 GeV.
The STAR collaboration at RHIC presents measurements of \Jpsi$\to{e^+e^-}$ at mid-rapidity and high transverse momentum ($p_T>5$ GeV/$c$) in \pp and central \cucu collisions at \sNN = 200 GeV. The inclusive \Jpsi production cross section for \cucu collisions is found to be consistent at high $p_T$ with the binary collision-scaled cross section for \pp collisions, in contrast to previous measurements at lower $p_T$, where a suppression of \Jpsi production is observed relative to the expectation from binary scaling. Azimuthal correlations of $J/\psi$ with charged hadrons in \pp collisions provide an estimate of the contribution of $B$-meson decays to \Jpsi production of $13% \pm 5%$.
J/psi differential production cross section in sqrt(s).
J/psi transverse momentum distribution in sqrt(s).
J/psi transverse momentum distribution in sqrt(s).
The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 4.0 GeV/c) of single electrons as a function of centrality in Au+Au collisions at sqrt(s_NN) = 200 GeV. Contributions to the raw spectra from photon conversions and Dalitz decays of light neutral mesons are measured by introducing a thin (1.7% X_0) converter into the PHENIX acceptance and are statistically removed. The subtracted ``non-photonic'' electron spectra are primarily due to the semi-leptonic decays of hadrons containing heavy quarks (charm and bottom). For all centralities, charm production is found to scale with the nuclear overlap function, T_AA. For minimum-bias collisions the charm cross section per binary collision is N_cc^bar/T_AA = 622 +/- 57 (stat.) +/- 160 (sys.) microbarns.
Value of the Alpha power as used in a fit of dN/dy versus Ncoll of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value only includes data from Au+Au collisions The value of Alpha = 1 is the expectation in the absence of medium effects.
Value of the Alpha power as used in a fit of dN/dy versus Ncoll, of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value is calculated including previous data of p+p collisions, measured by PHENIX, in addition of the Au+Au data The value of Alpha = 1 is the expectation in the absence of medium effects.
Spectrum in transverse momentum of electrons created in open heavy flavor decays, for minimum bias events.
Inclusive differential cross sections $d\sigma_{pA}/dx_F$ and $d\sigma_{pA}/dp_t^2$ for the production of \kzeros, \lambdazero, and \antilambda particles are measured at HERA in proton-induced reactions on C, Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to $\sqrt {s} = 41.6$ GeV in the proton-nucleon system. The ratios of differential cross sections \rklpa and \rllpa are measured to be $6.2\pm 0.5$ and $0.66\pm 0.07$, respectively, for \xf $\approx-0.06$. No significant dependence upon the target material is observed. Within errors, the slopes of the transverse momentum distributions $d\sigma_{pA}/dp_t^2$ also show no significant dependence upon the target material. The dependence of the extrapolated total cross sections $\sigma_{pA}$ on the atomic mass $A$ of the target material is discussed, and the deduced cross sections per nucleon $\sigma_{pN}$ are compared with results obtained at other energies.
Inclusive differential cross section DSIG/DXL for K0S production in the XL interval -0.12 to 0.0 plus the total cross section after extrapolation to the full XL range.
Inclusive differential cross section DSIG/DXL for LAMBDA production in the XL interval -0.12 to 0.0 plus the total cross section after extrapolation to thefull XL range.
Inclusive differential cross section DSIG/DXL for LAMBDABAR production in the XL interval -0.12 to 0.0 plus the total cross section after extrapolation to the full XL range.
We have studied the diffractive dissociation into di-jets of 500 GeV/c pions scattering coherently from carbon and platinum targets. Extrapolating to asymptotically high energies (where t_{min} approaches 0) we find that when the per-nucleus cross-section for this process is parameterized as $ \sigma = \sigma_0 A^{\alpha} $, $ \alpha $ has values near 1.6, the exact result depending on jet transverse momentum. These values are in agreement with those predicted by theoretical calculations of color-transparency.
Cross sections is fitted to A**POWER.
The complete charge distribution of products from Au nuclei fragmenting in nuclear emulsion at 10.7A GeV has been measured. Multiplicities of produced particles and particles associated with the targe
No description provided.
No description provided.
We present a measurement and comparison of the χc1 and χc2 production cross sections determined from interactions of 300-GeV/c π± and p with a Li target. We find χc1χc2 production ratios of 0.52−0.27+0.57 and 0.08−0.15+0.25 from reactions induced by π± and p, respectively.
The cross section per nucleon.
The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(PT**2)= CONST*EXP(SLOPE*PT), D(SIG)/D(XL) = CONST*(1-(XL-CONST(C=X0))**2)**POWER(C=1) , and D(SIG)/D(XL) = CONST*(1-ABS(XL-CONST(C=XC)))**POWER(C=2).
The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(COS(THETA)) = CONST*(1+CONST*COS(THETA)**2), where THETA is the angle between the MU+ and beam momentum in the CHI/C rest frame.
The production of the Jψ resonance in 125-GeV/c p¯ and φ− interactions with Be, Cu, and W targets has been measured. The cross section per nucleon for Jψ production is suppressed in W interactions relative to the lighter targets, especially at large values of Feynman x, which is opposite to the expectation from the various explanations of the European Muon Collaboration effect. Models incorporating modifications of the gluon structure functions in heavy targets show qualitative agreement with the data.
No description provided.
No description provided.
No description provided.