A polarized proton beam from SATURNE II, the Saclay polarized targets with$^6$Li compounds, and an unpol
The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.
The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.
The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.
A polarized proton beam extracted from SATURNE II, the Saclay polarized target with$^6$Li compounds, and
Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.
Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.
Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.
The tensor analyzing power A yy in inclusive breakup of 9 GeV/c deuterons on carbon has been measured at the detected proton angle of 85 mr. The analyzing power remains positive at the highest measured momentum of the proton in definite contradiction with the predictions of the existing models. The vector analyzing power A y has been obtained simultaneously with A yy .
No description provided.
A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to measure the rescattering observables$K_{onno}$and
No description provided.
No description provided.
No description provided.
A polarized proton beam extracted from SATURNE II was scattered on an unpolarized CH 2 target. The angular distribution of the beam analyzing power A oono was measured at large angles from 1.98 to 2.8 GeV and at 0.80 GeV nominal beam kinetic energy. The same observable was determined at the fixed mean laboratory angle of 13.9° in the same energy range. Both measurements are by-products of an experiment measuring the spin correlation parameter A oon .
Analysing power measurements at a fixed laboratory angle of 13.9 degrees.
No description provided.
No description provided.
A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to determine the spin correlation parameter Aoosk and the rescattering observablesKos″ so; Dos″ok, Nos″sn, andNonsk at 1.80 and 2.10 GeV. The beam polarization was oriented perpendicular to the beam direction in the horizontal scattering plane and the target polarization was directed either along the vertical axis or longitudinally. Left-right and up-down asymmetries in the second scattering were measured. A check for the beam optimization with the beam and target polarizations oriented vertically provided other observables, of which results forDonon andKonno at 1.80, 1.85, 2.04, and 2.10 GeV are listed here. The new data at 2.10 GeV suggest a smooth energy dependence of spin triplet scattering amplitudes at fixed angles in the vicinity of this energy.
Spin correlation parameter CSL measured with the beam polarisation measuredalong the +-S direction and the target polarisation along the +-L axis. Additional 4.3 PCT systematic normalisation uncertainty.
Measurement of the rescattering parameter KSS with the beam polarisation inthe +- S direction. Additional 6.7 PCT systematic error.
Measurement of the rescattering parameter KSS with the beam polarisation inthe +- S direction. Additional 6.7 PCT systematic error.
Single-spin asymmetries for hadrons have been measured in collisions of transversely-polarized 40 GeV/c proton beam with an unpolarized liquid hydrogen target. The asymmetries were measured for pi+-, K+-, protons and antiprotons, produced in the central region (0.02 < Xf < 0.10 and 0.7 < Pt < 3.4 GeV/c). Asymmetries for pi+-, K+- and antiprotons show within measurement errors the linear dependence on Xt and change a sign near 0.37. For protons negative asymmetry, independent of Xt has been found. The results are compared with those of other experiments and SU(6) model predictions.
.
.
.
Angular distributions for the differential cross section and three deuteron analyzing powers iT11, T20, and T22 of the reaction d→p→3Heπ0 have been measured over the whole angular domain at 20 energies close to threshold (0.03<Tπc.m.<10.2 MeV). The differential cross section and tensor analyzing power T20 both show strong variation in energy and angle due to interference between S- and P-wave pion production, whereas iT11 and T22 remain consistent with zero over the whole experimental range. All the data at different energies and angles fall on universal curves when plotted as functions of the single variable pπcosΘ, evaluated in the c.m. The broad features of the results are in line with theoretical expectations. © 1996 The American Physical Society.
No description provided.
Results of the total cross section differenceΔσL in anp transmission experiment at 1.19, 2.49 and 3.65 GeV incident neutron beam kinetic energies are presented. Measurements were performed at the Synchrophasotron of the Laboratory of High Energies of the Joint Institute for Nuclear Research in Dubna. Results were obtained with a polarized beam of free quasi-monochromatic neutrons passing through the new Dubna frozen spin proton target. The beam and target polarizations were oriented longitudinally. The present results were obtained at the highest energies of free polarized neutrons that can be reached at present. They extend the energy range of existing results from PSI, LAMPF and Saclay measured between 0.066 and 1.10 GeV. The new results are compared withΔσL(pn) data determined as a difference betweenΔσL(pd) andΔσL(pp) ANL-ZGS measurements. The values ofΔσL for the isospin stateI=0 were deduced using knownpp data.
Errors contain statistical and systematic errors added in quadrature. Axis error includes +- 0.05/0.05 contribution (An additional error due to the extrapolation towards zero solid angle).
No description provided.
A new measurement of $\Delta\sigma_T$ for polarized neutrons transmitted through a polarized proton target at 16.2 MeV has been made. A polarized neutron beam was obtained from the $^{3}\rm{H}(d,\vec n)^{4}\rm{He}$ reaction; proton polarization over 90\% was achieved in a frozen spin target of 20 cm$^3$ volume. The measurement yielded the value $\Delta\sigma_T=(-126\pm21\pm14)$ mb. The result of a simple phase shift analysis for the $^3S_1-^3D_1$ mixing parameter $\epsilon_1$ is presented and compared with the theoretical potential model predictions.
No description provided.