Version 2
Global polarization measurement in Au+Au collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 76 (2007) 024915, 2007.
Inspire Record 750410 DOI 10.17182/hepdata.98581

The system created in non-central relativistic nucleus-nucleus collisions possesses large orbital angular momentum. Due to spin-orbit coupling, particles produced in such a system could become globally polarized along the direction of the system angular momentum. We present the results of Lambda and anti-Lambda hyperon global polarization measurements in Au+Au collisions at sqrt{s_NN}=62.4 GeV and 200 GeV performed with the STAR detector at RHIC. The observed global polarization of Lambda and anti-Lambda hyperons in the STAR acceptance is consistent with zero within the precision of the measurements. The obtained upper limit, |P_{Lambda,anti-Lambda}| <= 0.02, is compared to the theoretical values discussed recently in the literature.

0 data tables match query

Coherent rho0 production in ultra-peripheral heavy ion collisions.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 89 (2002) 272302, 2002.
Inspire Record 588142 DOI 10.17182/hepdata.102319

The STAR collaboration reports the first observation of exclusive rho^0 photo-production, AuAu->AuAu rho^0, and rho^0 production accompanied by mutual nuclear Coulomb excitation, AuAu->Au*Au*rho^0, in ultra-peripheral heavy-ion collisions. The rho^0 have low transverse momenta, consistent with coherent coupling to both nuclei. The cross sections at sqrt(s_NN)=130GeV agree with theoretical predictions treating rho^0 production and Coulomb excitation as independent processes.

0 data tables match query

Scaling properties at freeze-out in relativistic heavy ion collisions

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 83 (2011) 034910, 2011.
Inspire Record 865572 DOI 10.17182/hepdata.104504

Identified charged pion, kaon, and proton spectra are used to explore the system size dependence of bulk freeze-out properties in Cu+Cu collisions at $\sqrt{s_{NN}}$=200 and 62.4 GeV. The data are studied with hydrodynamically-motivated Blast-wave and statistical model frameworks in order to characterize the freeze-out properties of the system. The dependence of freeze-out parameters on beam energy and collision centrality is discussed. Using the existing results from Au+Au and $pp$ collisions, the dependence of freeze-out parameters on the system size is also explored. This multi-dimensional systematic study furthers our understanding of the QCD phase diagram revealing the importance of the initial geometrical overlap of the colliding ions. The analysis of Cu+Cu collisions, which expands the system size dependence studies from Au+Au data with detailed measurements in the smaller system, shows that the bulk freeze-out properties of charged particles studied here scale with the total charged particle multiplicity at mid-rapidity, suggesting the relevance of initial state effects.

0 data tables match query

Pion, kaon, proton and anti-proton transverse momentum distributions from p + p and d + Au collisions at s(NN)**1/2 = 200-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 616 (2005) 8-16, 2005.
Inspire Record 628232 DOI 10.17182/hepdata.98859

Identified mid-rapidity particle spectra of $\pi^{\pm}$, $K^{\pm}$, and $p(\bar{p})$ from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor ($R_{dAu}$) between protons $(p+\bar{p})$ and charged hadrons ($h$) in the transverse momentum range $1.2<{p_{T}}<3.0$ GeV/c is measured to be $1.19\pm0.05$(stat)$\pm0.03$(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of $(p+\bar{p})/h$ in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.

1 data table match query

Minimum-bias ratios of protons (p+$\bar{p}$) over inclusive charged hadrons (h) at -0.5 $<$ $\eta$ 0.0 from $\sqrt{s} = 200 GeV$ p+p, d+Au and $\sqrt{s}$ = 130 GeV AuAu collisions. Errors are statistical.


Centrality and pseudorapidity dependence of charged hadron production at intermediate p(T) in Au + Au collisions at s(NN)**(1/2) = 130-GeV

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 70 (2004) 044901, 2004.
Inspire Record 648464 DOI 10.17182/hepdata.98858

We present STAR measurements of charged hadron production as a function of centrality in Au + Au collisions at sqrt(s_NN) = 130 GeV. The measurements cover a phase space region of 0.2 < p_T < 6.0 GeV/c in transverse momentum and -1 < eta < 1 in pseudorapidity. Inclusive transverse momentum distributions of charged hadrons in the pseudorapidity region 0.5 < |eta| < 1 are reported and compared to our previously published results for |eta| < 0.5. No significant difference is seen for inclusive p_T distributions of charged hadrons in these two pseudorapidity bins. We measured dN/deta distributions and truncated mean p_T in a region of p_T > p_T^cut, and studied the results in the framework of participant and binary scaling. No clear evidence is observed for participant scaling of charged hadron yield in the measured p_T region. The relative importance of hard scattering process is investigated through binary scaling fraction of particle production.

2 data tables match query

Ratio of the number of participants Npart or the number of binary collisions Nbin determined from different models to that from Monte Carlo Glauber calculation.

Ratio of the number of participants Npart or the number of binary collisions Nbin determined from different models to that from Monte Carlo Glauber calculation.


Pion femtoscopy in p+p collisions at sqrt(s)=200 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 83 (2011) 064905, 2011.
Inspire Record 850950 DOI 10.17182/hepdata.97125

The STAR Collaboration at RHIC has measured two-pion correlation functions from p+p collisions at sqrt(s)=200 GeV. Spatial scales are extracted via a femtoscopic analysis of the correlations, though this analysis is complicated by the presence of strong non-femtoscopic effects. Our results are put into the context of the world dataset of femtoscopy in hadron-hadron collisions. We present the first direct comparison of femtoscopy in p+p and heavy ion collisions, under identical analysis and detector conditions.

0 data tables match query

Pion Interferometry in Au+Au and Cu+Cu Collisions at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 024905, 2009.
Inspire Record 814937 DOI 10.17182/hepdata.97124

We present a systematic analysis of two-pion interferometry in Au+Au collisions at $\sqrt{s_{\rm{NN}}}$ = 62.4 GeV and Cu+Cu collisions at $\sqrt{s_{\rm{NN}}}$ = 62.4 and 200 GeV using the STAR detector at RHIC. The multiplicity and transverse momentum dependences of the extracted femtoscopic radii are studied. The scaling of the apparent freeze-out volume with charged particle multiplicity is studied for the RHIC energy domain. The multiplicity scaling of the measured radii is found to be independent of colliding system and collision energy.

0 data tables match query

Midrapidity phi production in Au+Au collisions at sNN =130 GeV

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.C 65 (2002) 041901, 2002.
Inspire Record 584631 DOI 10.17182/hepdata.102317

We present the first measurement of midrapidity vector meson φ production in Au+Au collisions at RHIC (sNN=130 GeV) from the STAR detector. For the 11% highest multiplicity collisions, the slope parameter from an exponential fit to the transverse mass distribution is T=379±50(stat)±45(syst) MeV, the yield dN/dy=5.73±0.37(stat)±0.69(syst) per event, and the ratio Nφ/Nh− is found to be 0.021±0.001(stat)±0.004(syst). The measured ratio Nφ/Nh− and T for the φ meson at midrapidity do not change for the selected multiplicity bins.

0 data tables match query

rho^0 Photoproduction in Ultra-Peripheral Relativistic Heavy Ion Collisions with STAR

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 77 (2008) 034910, 2008.
Inspire Record 771169 DOI 10.17182/hepdata.98962

Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR collaboration presents a measurement of rho^0 and direct pi^+pi^- photoproduction in ultra-peripheral relativistic heavy ion collisions at sqrt(s_{NN})=200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross-section of sigma(AuAu) -> Au^*Au^*rho^0 = 530 pm 19 (stat.) pm 57 (syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The rho^0 transverse momentum spectrum (p_{T}^2) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus/ we find sigma_{inc}/sigma_{coh} = 0.29 pm 0.03 (stat.) pm 0.08 (syst.). The ratio of direct pi^+pi^- to rho^0 production is comparable to that observed in gamma p collisions at HERA, and appears to be independent of photon energy. Finally, the measured rho^0 spin helicity matrix elements agree within errors with the expected s-channel helicity conservation.

0 data tables match query

Measurements of $\phi$ meson production in relativistic heavy-ion collisions at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 064903, 2009.
Inspire Record 797805 DOI 10.17182/hepdata.99047

We present results for the measurement of $\phi$ meson production via its charged kaon decay channel $\phi \to K^+K^-$ in Au+Au collisions at $\sqrt{s_{_{NN}}}=62.4$, 130, 200 GeV, and in p+p and d+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV from the STAR experiment at RHIC. The mid-rapidity ($|y|<0.5$) $\phi$ meson spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the spectra from p+p, d+Au and peripheral Au+Au collisions show power-law tails at intermediate and high transverse momenta ($p_{T}$) and are described better by Levy distributions. The constant $\phi/K^-$ yield ratio vs. beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for $\phi$ production at RHIC. The $\Omega/\phi$ yield ratio as a function of $p_{T}$ is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\sim 4$ GeV/c, but disagrees at higher transverse momenta. The measured nuclear modification factor, $R_{dAu}$, for the $\phi$ meson increases above unity at intermediate $p_{T}$, similar to that for pions and protons, while $R_{AA}$ is suppressed due to jet quenching in central Au+Au collisions. Number of constituent quark scaling of both $R_{cp}$ and $v_{2}$ for the $\phi$ meson with respect to other hadrons in Au+Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV at intermediate $p_{T}$ is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate $p_{T}$ region at RHIC.

0 data tables match query