The production cross sections of B$^0_\mathrm{s}$ and B$^+$ mesons are reported in proton-proton (pp) collisions recorded by the CMS experiment at the CERN LHC with a center-of-mass energy of 5.02 TeV. The data sample corresponds to an integrated luminosity of 302 pb$^{-1}$. The cross sections are based on measurements of the B$^0_\mathrm{s}$$\to$ J/$ψ(μ^+μ^-)ϕ$(1020) (K$^+$K$^-$) and B$^+$$\to$ J/$ψ(μ^+μ^-)$K$^+$ decay channels. Results are presented in the transverse momentum ($p_\mathrm{T}$) range 7-50 GeV/$c$ and the rapidity interval $\lvert y \rvert$$\lt$ 2.4 for the B mesons. The measured $p_\mathrm{T}$-differential cross sections of B$^+$ and B$^0_\mathrm{s}$ in pp collisions are well described by fixed-order plus next-to-leading logarithm perturbative quantum chromodynamics calculations. Using previous PbPb collision measurements at the same nucleon-nucleon center-of-mass energy, the nuclear modification factors, $R_\mathrm{AA}$, of the B mesons are determined. For $p_\mathrm{T}$$\lt$ 10 GeV/$c$, both mesons are found to be suppressed in PbPb collisions (with $R_\mathrm{AA}$ values significantly below unity), with less suppression observed for the B$^0_\mathrm{s}$ mesons. In this $p_\mathrm{T}$ range, the $R_\mathrm{AA}$ values for the B$^+$ mesons are consistent with those for inclusive charged hadrons and D$^0$ mesons. Below 10 GeV/$c$, both B$^+$ and B$^0_\mathrm{s}$ are found to be less suppressed than either inclusive charged hadrons or D$^0$ mesons, with the B$^0_\mathrm{s}$$R_\mathrm{AA}$ value consistent with unity. The $R_\mathrm{AA}$ values found for the B$^+$ and B$^0_\mathrm{s}$ are compared to theoretical calculations, providing constraints on the mechanism of bottom quark energy loss and hadronization in the quark-gluon plasma, the hot and dense matter created in ultrarelativistic heavy ion collisions.
The B+ meson $p_{\rm{T}}$-dependent production cross section in pp collisions. The measurment was carried out inside a fiducial region respecting ($p_{\rm{T}}$<10 & 1.5<|y|<2.4) and ($p_{\rm{T}}$>10 & |y|<2.4). The luminosity is 302.3 pb^{-1}.
The Bs meson $p_{\rm{T}}$-dependent production cross section in pp collisions. The measurment was carried out inside a fiducial region respecting (pT<10 & 1.5<|y|<2.4) and ($p_{\rm{T}}$>10 & |y|<2.4). The luminosity is 302.3 pb^{-1}.
The B+ meson $p_{\rm{T}}$-dependent RAA in PpPp. The measurment was carried out inside a fiducial region respecting ($p_{\rm{T}}$<10 & 1.5<|y|<2.4) and ($p_{\rm{T}}$>10 & |y|<2.4).
The polarizations of prompt and non-prompt J$/\psi$ and $\psi$(2S) mesons are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV, using data samples collected by the CMS experiment in 2017 and 2018, corresponding to a total integrated luminosity of 103.3 fb$^{-1}$. Based on the analysis of the dimuon decay angular distributions in the helicity frame, the polar anisotropy, $\lambda_\theta$, is measured as a function of the transverse momentum, $p_\mathrm{T}$, of the charmonium states, in the 25-120 and 20-100 GeV ranges for the J$/\psi$ and $\psi$(2S), respectively. The non-prompt polarizations agree with predictions based on the hypothesis that, for $p_\mathrm{T}$$\gtrsim$ 25 GeV, the non-prompt J$/\psi$ and $\psi$(2S) are predominantly produced in two-body B meson decays. The prompt results clearly exclude strong transverse polarizations, even for $p_\mathrm{T}$ exceeding 30 times the J$/\psi$ mass, where $\lambda_\theta$ tends to an asymptotic value around 0.3. Taken together with previous measurements, by CMS and LHCb at $\sqrt{s}$ = 7 TeV, the prompt polarizations show a significant variation with $p_\mathrm{T}$, at low $p_\mathrm{T}$.
prompt $\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi$ $\lambda_\theta$
non prompt $\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi$ $\lambda_\theta$
prompt $\psi(2S)$ $\lambda_\theta$
Measurements of the differential production cross-sections of prompt and non-prompt $J/\psi$ and $\psi(2$S$)$ mesons with transverse momenta between 8 and 360 GeV and rapidity in the range $|y|<2$ are reported. Furthermore, measurements of the non-prompt fractions of $J/\psi$ and $\psi(2$S$)$, and the prompt and non-prompt $\psi(2$S$)$-to-$J/\psi$ production ratios, are presented. The analysis is performed using 140 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data recorded by the ATLAS detector at the LHC during the years 2015-2018.
Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.
Summary of results for cross-section of non-prompt $J/\psi$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.
Summary of results for cross-section of prompt $\psi(2S)$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.
This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.
- - - - - - - - - - - - - - - - - - - - <br><b>charged-hadron spectra:</b> <br><i>pp reference:</i>   <a href="?version=1&table=Table1">for p+Pb</a>   <a href="?version=1&table=Table10">for Pb+Pb</a>   <a href="?version=1&table=Table19">for Xe+Xe</a>   <br><i>p+Pb:</i>   <a href="?version=1&table=Table2">0-5%</a>   <a href="?version=1&table=Table3">5-10%</a>   <a href="?version=1&table=Table4">10-20%</a>   <a href="?version=1&table=Table5">20-30%</a>   <a href="?version=1&table=Table6">30-40%</a>   <a href="?version=1&table=Table7">40-60%</a>   <a href="?version=1&table=Table8">60-90%</a>   <a href="?version=1&table=Table9">0-90%</a>   <br><i>Pb+Pb:</i>   <a href="?version=1&table=Table11">0-5%</a>   <a href="?version=1&table=Table12">5-10%</a>   <a href="?version=1&table=Table13">10-20%</a>   <a href="?version=1&table=Table14">20-30%</a>   <a href="?version=1&table=Table15">30-40%</a>   <a href="?version=1&table=Table16">40-50%</a>   <a href="?version=1&table=Table17">50-60%</a>   <a href="?version=1&table=Table18">60-80%</a>   <br><i>Xe+Xe:</i>   <a href="?version=1&table=Table20">0-5%</a>   <a href="?version=1&table=Table21">5-10%</a>   <a href="?version=1&table=Table22">10-20%</a>   <a href="?version=1&table=Table23">20-30%</a>   <a href="?version=1&table=Table24">30-40%</a>   <a href="?version=1&table=Table25">40-50%</a>   <a href="?version=1&table=Table26">50-60%</a>   <a href="?version=1&table=Table27">60-80%</a>   </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (p<sub>T</sub>):</b> <br><i>R<sub>pPb</sub>:</i>   <a href="?version=1&table=Table28">0-5%</a>   <a href="?version=1&table=Table29">5-10%</a>   <a href="?version=1&table=Table30">10-20%</a>   <a href="?version=1&table=Table31">20-30%</a>   <a href="?version=1&table=Table32">30-40%</a>   <a href="?version=1&table=Table33">40-60%</a>   <a href="?version=1&table=Table34">60-90%</a>   <a href="?version=1&table=Table35">0-90%</a>   <br><i>R<sub>AA</sub> (Pb+Pb):</i>   <a href="?version=1&table=Table36">0-5%</a>   <a href="?version=1&table=Table37">5-10%</a>   <a href="?version=1&table=Table38">10-20%</a>   <a href="?version=1&table=Table39">20-30%</a>   <a href="?version=1&table=Table40">30-40%</a>   <a href="?version=1&table=Table41">40-50%</a>   <a href="?version=1&table=Table42">50-60%</a>   <a href="?version=1&table=Table43">60-80%</a>   <br><i>R<sub>AA</sub> (Xe+Xe):</i>   <a href="?version=1&table=Table44">0-5%</a>   <a href="?version=1&table=Table45">5-10%</a>   <a href="?version=1&table=Table46">10-20%</a>   <a href="?version=1&table=Table47">20-30%</a>   <a href="?version=1&table=Table48">30-40%</a>   <a href="?version=1&table=Table49">40-50%</a>   <a href="?version=1&table=Table50">50-60%</a>   <a href="?version=1&table=Table51">60-80%</a>   </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (y*/eta):</b> <br><i>R<sub>pPb</sub>:</i> <br>  0-5%:   <a href="?version=1&table=Table52">0.66-0.755GeV</a>   <a href="?version=1&table=Table53">2.95-3.35GeV</a>   <a href="?version=1&table=Table54">7.65-8.8GeV</a>   <a href="?version=1&table=Table55">15.1-17.3GeV</a>   <br>  5-10%:   <a href="?version=1&table=Table56">0.66-0.755GeV</a>   <a href="?version=1&table=Table57">2.95-3.35GeV</a>   <a href="?version=1&table=Table58">7.65-8.8GeV</a>   <a href="?version=1&table=Table59">15.1-17.3GeV</a>   <br>  10-20%:   <a href="?version=1&table=Table60">0.66-0.755GeV</a>   <a href="?version=1&table=Table61">2.95-3.35GeV</a>   <a href="?version=1&table=Table62">7.65-8.8GeV</a>   <a href="?version=1&table=Table63">15.1-17.3GeV</a>   <br>  20-30%:   <a href="?version=1&table=Table64">0.66-0.755GeV</a>   <a href="?version=1&table=Table65">2.95-3.35GeV</a>   <a href="?version=1&table=Table66">7.65-8.8GeV</a>   <a href="?version=1&table=Table67">15.1-17.3GeV</a>   <br>  30-40%:   <a href="?version=1&table=Table68">0.66-0.755GeV</a>   <a href="?version=1&table=Table69">2.95-3.35GeV</a>   <a href="?version=1&table=Table70">7.65-8.8GeV</a>   <a href="?version=1&table=Table71">15.1-17.3GeV</a>   <br>  40-60%:   <a href="?version=1&table=Table72">0.66-0.755GeV</a>   <a href="?version=1&table=Table73">2.95-3.35GeV</a>   <a href="?version=1&table=Table74">7.65-8.8GeV</a>   <a href="?version=1&table=Table75">15.1-17.3GeV</a>   <br>  60-90%:   <a href="?version=1&table=Table76">0.66-0.755GeV</a>   <a href="?version=1&table=Table77">2.95-3.35GeV</a>   <a href="?version=1&table=Table78">7.65-8.8GeV</a>   <a href="?version=1&table=Table79">15.1-17.3GeV</a>   <br>  0-90%:   <a href="?version=1&table=Table80">0.66-0.755GeV</a>   <a href="?version=1&table=Table81">2.95-3.35GeV</a>   <a href="?version=1&table=Table82">7.65-8.8GeV</a>   <a href="?version=1&table=Table83">15.1-17.3GeV</a>   <br><i>R<sub>AA</sub> (Pb+Pb):</i> <br>  0-5%:   <a href="?version=1&table=Table84">1.7-1.95GeV</a>   <a href="?version=1&table=Table85">6.7-7.65GeV</a>   <a href="?version=1&table=Table86">20-23GeV</a>   <a href="?version=1&table=Table87">60-95GeV</a>   <br>  5-10%:   <a href="?version=1&table=Table88">1.7-1.95GeV</a>   <a href="?version=1&table=Table89">6.7-7.65GeV</a>   <a href="?version=1&table=Table90">20-23GeV</a>   <a href="?version=1&table=Table91">60-95GeV</a>   <br>  10-20%:   <a href="?version=1&table=Table92">1.7-1.95GeV</a>   <a href="?version=1&table=Table93">6.7-7.65GeV</a>   <a href="?version=1&table=Table94">20-23GeV</a>   <a href="?version=1&table=Table95">60-95GeV</a>   <br>  20-30%:   <a href="?version=1&table=Table96">1.7-1.95GeV</a>   <a href="?version=1&table=Table97">6.7-7.65GeV</a>   <a href="?version=1&table=Table98">20-23GeV</a>   <a href="?version=1&table=Table99">60-95GeV</a>   <br>  30-40%:   <a href="?version=1&table=Table100">1.7-1.95GeV</a>   <a href="?version=1&table=Table101">6.7-7.65GeV</a>   <a href="?version=1&table=Table102">20-23GeV</a>   <a href="?version=1&table=Table103">60-95GeV</a>   <br>  40-50%:   <a href="?version=1&table=Table104">1.7-1.95GeV</a>   <a href="?version=1&table=Table105">6.7-7.65GeV</a>   <a href="?version=1&table=Table106">20-23GeV</a>   <a href="?version=1&table=Table107">60-95GeV</a>   <br>  50-60%:   <a href="?version=1&table=Table108">1.7-1.95GeV</a>   <a href="?version=1&table=Table109">6.7-7.65GeV</a>   <a href="?version=1&table=Table110">20-23GeV</a>   <a href="?version=1&table=Table111">60-95GeV</a>   <br>  60-80%:   <a href="?version=1&table=Table112">1.7-1.95GeV</a>   <a href="?version=1&table=Table113">6.7-7.65GeV</a>   <a href="?version=1&table=Table114">20-23GeV</a>   <a href="?version=1&table=Table115">60-95GeV</a>   <br><i>R<sub>AA</sub> (Xe+Xe):</i> <br>  0-5%:   <a href="?version=1&table=Table116">1.7-1.95GeV</a>   <a href="?version=1&table=Table117">6.7-7.65GeV</a>   <a href="?version=1&table=Table118">20-23GeV</a>   <br>  5-10%:   <a href="?version=1&table=Table119">1.7-1.95GeV</a>   <a href="?version=1&table=Table120">6.7-7.65GeV</a>   <a href="?version=1&table=Table121">20-23GeV</a>   <br>  10-20%:   <a href="?version=1&table=Table122">1.7-1.95GeV</a>   <a href="?version=1&table=Table123">6.7-7.65GeV</a>   <a href="?version=1&table=Table124">20-23GeV</a>   <br>  20-30%:   <a href="?version=1&table=Table125">1.7-1.95GeV</a>   <a href="?version=1&table=Table126">6.7-7.65GeV</a>   <a href="?version=1&table=Table127">20-23GeV</a>   <br>  30-40%:   <a href="?version=1&table=Table128">1.7-1.95GeV</a>   <a href="?version=1&table=Table129">6.7-7.65GeV</a>   <a href="?version=1&table=Table130">20-23GeV</a>   <br>  40-50%:   <a href="?version=1&table=Table131">1.7-1.95GeV</a>   <a href="?version=1&table=Table132">6.7-7.65GeV</a>   <a href="?version=1&table=Table133">20-23GeV</a>   <br>  50-60%:   <a href="?version=1&table=Table134">1.7-1.95GeV</a>   <a href="?version=1&table=Table135">6.7-7.65GeV</a>   <a href="?version=1&table=Table136">20-23GeV</a>   <br>  60-80%:   <a href="?version=1&table=Table137">1.7-1.95GeV</a>   <a href="?version=1&table=Table138">6.7-7.65GeV</a>   <a href="?version=1&table=Table139">20-23GeV</a>   <br>- - - - - - - - - - - - - - - - - - - -
Charged-hadron cross-section in pp collisions. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 0-5% for p+Pb, divided by 〈TPPB〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.
Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.
Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0<p_{\text{T}}<20~\text{GeV}/c$ and $2.0<y<4.5$ are $8.154\pm0.010\pm0.283~\mu\text{b}$ for prompt $J/\psi$ mesons and $0.820\pm0.003\pm0.034~\mu\text{b}$ for nonprompt $J/\psi$ mesons, where the first uncertainties are statistical and the second systematic. These cross-sections are compared with those at $\sqrt{s}=8$ TeV and $13$ TeV, and are used to update the measurement of the nuclear modification factor in proton-lead collisions for $J/\psi$ mesons at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}}=5$ TeV. The results are compared with theoretical predictions.
Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.
Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.
Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.
The production of prompt charged particles in proton-lead collisions and in proton-proton collisions at the nucleon-nucleon centre-of-mass energy ${\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5\,\mathrm{TeV}}$ is studied at LHCb as a function of pseudorapidity ($\eta$) and transverse momentum ($p_{\mathrm{T}}$) with respect to the proton beam direction. The nuclear modification factor for charged particles is determined as a function of $\eta$ between ${-4.8<\eta<-2.5}$ (backward region) and ${2.0<\eta<4.8}$ (forward region), and $p_{\mathrm{T}}$ between ${0.2<p_{\mathrm{T}}<8.0\,\mathrm{GeV}/c}$. The results show a suppression of charged particle production in proton-lead collisions relative to proton-proton collisions in the forward region and an enhancement in the backward region for $p_{\mathrm{T}}$ larger than $1.5\,\mathrm{GeV}/c$. This measurement constrains nuclear PDFs and saturation models at previously unexplored values of the parton momentum fraction down to $10^{-6}$.
Double-differential production cross-section for prompt charged particles in pp collisions at 5TeV with respect to pseudorapidity and transverse momentum. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
Double-differential production cross-section for prompt charged particles in pPb collisions at 5TeV with respect to pseudorapidity and transverse momentum in the forward region. The pseudorapidity is expressed in the nucleon-nucleon center-of-mass system. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
Double-differential production cross-section for prompt charged particles in pPb collisions at 5TeV with respect to pseudorapidity and transverse momentum in the backward region. The pseudorapidity is expressed in the nucleon-nucleon center-of-mass system. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
Using a data sample corresponding to an integrated luminosity of $2.0\,fb^{-1}$, collected by the LHCb experiment, the production of the $\eta_c(1S)$ state in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13 \text{ TeV}$ is studied in the rapidity range ${2.0 < y < 4.5}$ and in the transverse momentum range ${6.5 < p_{T} < 14.0\text{ GeV}}$. The cross-section for prompt production of $\eta_c(1S)$ mesons relative to that of the $J/\psi$ meson is measured using the ${p\bar{p}}$ decay mode and is found to be ${\sigma_{\eta_c(1S)}/\sigma_{J/\psi} = 1.69 \pm 0.15 \pm 0.10 \pm 0.18}$. The quoted uncertainties are, in order, statistical, systematic and due to uncertainties on the branching fractions of the ${J/\psi\to p \bar{p}}$ and ${\eta_c\to p \bar{p}}$ decays. The prompt $\eta_c(1S)$ production cross-section is determined to be ${\sigma_{\eta_c(1S)} = 1.26 \pm 0.11\pm 0.08 \pm 0.14 \,\mu b}$, where the last uncertainty includes that on the ${J/\psi}$ meson cross-section. The ratio of the branching fractions of $b$-hadron decays to the $\eta_c(1S)$ and ${J/\psi}$ states is measured to be ${\mathcal{B}_{b\to\eta_c X}/\mathcal{B}_{b\to J/\psi X} = 0.48 \pm 0.03 \pm 0.03 \pm 0.05}$, where the last uncertainty is due to those on the branching fractions of the ${J/\psi \to p \bar{p}}$ and ${\eta_c\to p \bar{p}}$ decays. The difference between the ${J/\psi}$ and $\eta_c(1S)$ masses is also determined to be ${113.0 \pm 0.7 \pm 0.1\text{ MeV}}$, which is the most precise single measurement of this quantity to date.
Relative $\eta_c$ to $J/\psi$ differential production cross-sections for prompt production. The uncertainties are statistical, systematic, and due to the ${\eta_c\to p\bar{p}}$ and ${J/\psi\to p\bar{p}}$ branching fractions, respectively.
Differential production cross-sections of $\eta_c$ for prompt production. The uncertainties are statistical, systematic, and due to the $\eta_c\to p \bar{p}$ and $J/\psi\to p \bar{p}$ branching fractions and $J/\psi$ production cross-section.
Relative $\eta_c$ to $J/\psi$ differential production cross-sections for production in $b$-hadron inclusive decays. The uncertainties are statistical, systematic, and due to the ${\eta_c\to p\bar{p}}$ and ${J/\psi\to p\bar{p}}$ branching fractions, respectively.
The production of $\Upsilon (nS)$ mesons ($n=1,2,3$) in $p$Pb and Pb$p$ collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{NN}}=8.16$ TeV is measured by the LHCb experiment, using a data sample corresponding to an integrated luminosity of 31.8 nb$^{-1}$. The $\Upsilon (nS)$ mesons are reconstructed through their decays into two opposite-sign muons. The measurements comprise the differential production cross-sections of the $\Upsilon (1S)$ and $\Upsilon (2S)$ states, their forward-to-backward ratios and nuclear modification factors, performed as a function of the transverse momentum $p_{\mathrm{T}}$ and rapidity in the nucleon-nucleon centre-of-mass frame $y^*$ of the $\Upsilon (nS)$ states, in the kinematic range $p_{\rm{T}}<25$ GeV/$c$ and $1.5<y^*<4.0$ ($-5.0<y^*<-2.5$) for $p$Pb (Pb$p$) collisions. In addition, production cross-sections for $\Upsilon (3S)$ are measured integrated over phase space and the production ratios between all three $\Upsilon (nS)$ states are determined. The measurements are compared to theoretical predictions and suppressions for quarkonium in $p$Pb collisions are observed.
$\Upsilon(1S)$ production cross-section in $p$Pb, as a function of $p_{T}$ and $y*$. The uncertainty is the sum in quadrature of the statistical and systematic components.
$\Upsilon(1S)$ production cross-section in Pb$p$, as a function of $p_{T}$ and $y^*$. The uncertainty is the sum in quadrature of the statistical and systematic components.
$\Upsilon(1S)$ production cross-section in $p$Pb and Pb$p$, as a function of $p_{T}$. The uncertainty is the sum in quadrature of the statistical and systematic components.
The inclusive $D_s^{\pm}$ production asymmetry is measured in $pp$ collisions collected by the LHCb experiment at centre-of-mass energies of $\sqrt{s} =7$ and 8 TeV. Promptly produced $D_s^{\pm}$ mesons are used, which decay as $D_s^{\pm}\to\phi\pi^{\pm}$, with $\phi\to K^+K^-$. The measurement is performed in bins of transverse momentum, $p_{\rm T}$, and rapidity, $y$, covering the range $2.5
Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the combined $\sqrt{s} =7$ and 8 TeV data sets. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).
Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the $\sqrt{s} =7$ TeV data set. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).
Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the $\sqrt{s} =8$ TeV data set. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).